A Structured Approach to Parallel Programming

Thesis by

Berna Massingill

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1998
(Submitted September 25, 1997)

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1998 2. REPORT TYPE 00-00-1998 to 00-00-1998
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Structured Approach to Parallel Programming £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Office of Scientific Research,875 North Randolph Street Suite | REPORT NUMBER
325,Arlington,VA,22203-1768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 184
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ii

© 1998
Berna Massingill

All Rights Reserved

iii

Acknowledgments

What a long, strange trip it’s been.

— JERRY GARCIA

You certainly have met some interesting people out there!

— BILLIE S. MASSINGILL

Many people contributed, in many different ways, to this thesis and to my education at Caltech. I
thank all of them, in particular:

My advisor, Mani Chandy, whose remarkable ability to identify fundamental concepts made my
years at Caltech enlightening, and whose patience and all-around niceness made them enjoyable. It
has been a pleasure and a privilege to work with him.

The other members of my committee — Jim Arvo, Alain Martin, Dan Meiron, and Eric Van de
Velde — who reviewed my thesis and whose questions and comments on both the thesis and the
work were insightful and illuminating.

The members of my candidacy committee — Mani, Alain, Dan, FEric, and Yaser Abu-Mostafa
— who provided critical feedback at that milestone.

My instructors at Caltech, each of whom contributed a fresh and valuable perspective on his or
her field, most memorably Yaser Abu-Mostafa, Alain Martin, Beverly Sanders, Chuck Seitz, Eric
Van de Velde, Rick Wilson, and of course Mani. Eric deserves special thanks for his book Concurrent
Scientific Computing, which was a notable inspiration for this work.

Current and former members of the CS support staff — Dian De Sha, Arlene DesJardins, Cindy
Ferrini, Diane Goodfellow, Yvonne Recendez, Patty Renstrom, Gail Stowers, and Nancy Zachariasen
— who smoothed my path in countless ways, and all of the other members of the Caltech community
— from computer system administrators to the folks in the graduate office — who together created
a supportive and friendly environment.

The members of Mani’s research group — Joe Kiniry, Adam Rifkin, Eve Schooler, Paul Sivilotti,
John Thornley, and Dan Zimmerman — each of whom provided his or her own unique variety of
support, from technical expertise and critical feedback on my work to moral support. Adam and

Paul deserve special thanks for helping me set up my thesis defense from afar.

iv

The many others past and present members of the department who contributed to the whole
experience, among them: Nan Boden, who guided me through the admissions process and in doing
so answered more questions than she probably thought one person could ask; Peter Hofstee and Rajit
Manohar, who were always ready with both intellectual stimulation and moral support; Wen-King
Su, whose technical expertise even my endless questions haven’t exhausted and whose sympathetic
ear has been equally valuable; Marcel van der Goot, whose TEX expertise I also couldn’t exhaust;
and the late Mike Pertel, whose behavior in tragic circumstances was an inspiration.

The people in my former life who motivated me to attend Caltech and made it possible for me
to do so — Bill Athas, Bob Boyer, and Mike McCants.

The employees of Phillips Laboratory, the Air Force lab where I spent an instructive six weeks one
summer. Leon Chandler, who supervised my visit, and John Beggs, who helped with my research
project, deserve special thanks, as does in a different way the unnamed physicist whose casual remark
about computer scientists — “I can do physics and I can write Fortran; what do I need you guys
for?” — prodded me to consider the question of who benefits from my work.

The people who provided material for or participated in the development of applications discussed
in this thesis, including John Beggs, Tzu-Yi Chen, Donald Dabdub, Greg Davis, Karl Kunz and
Raymond Luebbers, John Langford and Lena Petrovic, Rajit Manohar, Anita Mareno, Dan Meiron,
and Ravi Samtaney. Dan deserves special thanks as the joint leader (with Mani) of the long-
term collaboration on the role of archetypes in scientific computing that produced most of these
applications.

Last but not least, the friends and family without whose support this whole venture would have
been difficult if not impossible. My mother deserves special mention for the many, many hours she
has spent lending a sympathetic ear and generally doing her best to keep me relatively sane. I might

have been able to do it without them, but I'm glad I didn’t have to.

The research described in this thesis was funded in part by a Milton E. Mohr graduate fellowship,
in part by an Air Force Laboratory graduate fellowship, and in part by the AFOSR and the NSF. I
thank them all for their support.

Abstract

Parallel programs are more difficult to develop and reason about than sequential programs. There are
two broad classes of parallel programs: (1) programs whose specifications describe ongoing behavior
and interaction with an environment, and (2) programs whose specifications describe the relation
between initial and final states. This thesis presents a simple, structured approach to developing
parallel programs of the latter class that allows much of the work of development and reasoning to be
done using the same techniques and tools used for sequential programs. In this approach, programs
are initially developed in a primary programming model that combines the standard sequential model
with a restricted form of parallel composition that is semantically equivalent to sequential compo-
sition. Such programs can be reasoned about using sequential techniques and executed sequentially
for testing. They are then transformed for execution on typical parallel architectures via a sequence
of semantics-preserving transformations, making use of two secondary programming models, both
based on parallel composition with barrier synchronization and one incorporating data partitioning.
The transformation process for a particular program is typically guided and assisted by a parallel
programming archetype, an abstraction that captures the commonality of a class of programs with
similar computational features and provides a class-specific strategy for producing efficient parallel
programs. Transformations may be applied manually or via a parallelizing compiler. Correctness of
transformations within the primary programming model is proved using standard sequential tech-
niques. Correctness of transformations between the programming models and between the models
and practical programming languages is proved using a state-transition-based operational model.
This thesis presents: (1) the primary and secondary programming models, (2) an operational
model that provides a common framework for reasoning about programs in all three models, (3)
a collection of example program transformations with arguments for their correctness, and (4) two
groups of experiments in which our overall approach was used to develop example applications. The
specific contribution of this work is to present a unified theory/practice framework for this approach
to parallel program development, tying together the underlying theory, the program transformations,

and the program-development methodology.

vi

Contents

Acknowledgments iii
Abstract v
1 Introduction 1
1.1 Alittle history e e 2
1.1.1 Experiments with archetypes (patterns) 2

1.1.2 Experiments with stepwise parallelization 2

1.1.3 Theoretical framework 2

1.2 Related work L 3
1.2.1 Foundations L 3

1.2.2 Related and complementary work, 3

1.3 Our programming model and methodology 4
1.3.1 The arb model: parallel composition with sequential semantics 4

1.3.2 Transformations from the arb model to practical parallel languages 4

1.3.3 Supporting framework for proving transformations correct 6

1.3.4 Programming archetypes o oo, 6

1.4 Chapter-by-chapter outline 6

2 The arb model 8
2.1 Program semantics and operational modelo L. 9
2.1.1 Overview e e e e e e e e e e 9

2.1.2 Definitions oL e e e e e 10

2.1.3 Specifications and program refinemento L. 14

2.1.4 Program composition oL 15

2.2 arb-compatibility and arb composition o o000 oL 18

2.2.1 Definition of arb-compatibility 0oL 19

vii

2.2.2 Equivalence of sequential and parallel composition for arb-compatible com-
PONENtS Lo e e e e e e e

2.2.3 Definition of arb composition oL oL oo
2.2.4 Properties of arb composition 000 o000
2.2.5 A simpler sufficient condition for arb-compatibility

2.3 arb composition and programming notationso o L
2.4 arb composition and Dijkstra’s guarded-command language
2.4.1 Dijkstra’s guarded-command language and our model
2.4.2 Conditions for arb-compatibility
2.4.3 Examples of arb composition oo oo

2.5 arb composition and Fortran 90 Lo
2.5.1 Fortran 90 and our model oL Lo
2.5.2 Conditions for arb-compatibility
253 Notation. e
2.5.4 Examples of arb compositiono o0 oo

2.6 Execution of arb-model programs oL
2.6.1 Sequential execution Lo
2.6.2 Parallel execution L

2.7 Appendix: Program semantics and operational model, details
2.7.1 Notation e
2.7.2 Definitions L.
2.7.3 Specifications and program refinemento
2.7.4 Program composition

2.8 arb-compatibility and arb composition, details o Lo
2.8.1 Definition of arb-compatibility 00 oL
2.8.2 Equivalence of sequential and parallel composition for arb-compatible com-
ponents L. e e e e

2.8.3 Simpler sufficient conditions for arb-compatibility

2.9 Appendix: Dijkstra’s guarded-command language and our model, details
2.9.1 Simple commands L Lo e e
2.9.2 Alternative composition (IF)
2.9.3 Repetition (DO) e

A collection of useful transformations
3.1 Removal of superfluous synchronization

3.1.1 Motivation e e e e e e e e e e e

3.2

3.3

3.4

The
4.1

4.2

4.3

44

The
5.1

5.2

viii

3.1.2 Definition and argument for correctness 68
3.1.3 Example. L e 69
Change of granularity 70
3.2.1 Motivation L e 70
3.2.2 Definition and argument for correctness 70
3.23 Example. e 71
Data distribution and duplicationo Lo 71
3.3.1 Motivation 71
3.3.2 Data distribution: definition and argument for correctness 72
3.3.3 Data distribution: exampleo 72
3.3.4 Data duplication: definition and argument for correctness 73
3.3.5 Data duplication: examples oo 75
Other transformations e 82
3.4.1 Reductions L 82
3.4.2 skip as an identity elemento oo 83
par model and shared-memory programs 85
Parallel composition with barrier synchronization 86
4.1.1 Specification of barrier synchronization 86
4.1.2 Definitions e e e 86
The par model e 88
4.2.1 Preliminary definitions oo oL 89
4.2.2 par-compatibilityo oL 89
4.2.3 par composition Lo e e 90
4.2.4 Examples of par composition Lo oo 92
Transforming arb-model programs into par-model programs 93
4.3.1 Theorems v o i i it e e e e e e e e e 93
4.3.2 Examples e e e 99
Executing par-model programs Lo 104
4.4.1 Parallel execution using X3H5 Fortran 104
442 Example.o e e e 104
subset par model and distributed-memory programs 106
Parallel composition with message-passing 106
5.1.1 Specificationo 106
5.1.2 Definitions oL e e e e e e e 107

The subset par model L 109

ix
5.2.1 Subset par-compatibility oL o

5.2.2 Example of subset par composition

5.3 Transforming subset-par-model programs into programs with message-passing

5.3.1 Transformations
5.3.2 Example. oL e
5.4 Executing subset-par-model programs oL Lo
5.4.1 Transformations to practical languages/libraries
5.4.2 Example.

Extended examples

6.1 2-dimensional FFT L
6.1.1 Problem description L
6.1.2 Program e
6.1.3 Applying our transformations Lo oL

6.2 1-dimensional heat equation solver
6.2.1 Problem description
6.2.2 Program
6.2.3 Applying our transformationso

6.3 2-dimensional iterative Poisson solver. L oL oL
6.3.1 Problem description L
6.3.2 Program

6.4 Quicksort L. e e e e e
6.4.1 Problem description L
6.4.2 Recursive program e e
6.4.3 “One-deep” program oo

Archetypes for scientific computing

7.1 Parallel program archetypes
7.1.1 Archetype-based assistance for application development
7.1.2 An archetype-based program development strategy

7.2 Example archetypes L e e e
7.2.1 The mesh-spectral archetype
7.2.2 The spectral archetype oo oo
7.2.3 The mesh archetype

7.3 Applications L e e
7.3.1 Development examples L e

7.3.2 Other applications o . i e e

115
115
115
115
115
118
118
118
118
122
122
122
124
124
124
124

8 Stepwise parallelization methodology
81 Themethodology e
8.2 Supporting theory e
8.2.1 The parallel program and its simulated-parallel version
8.2.2 Thetheorem e
8.2.3 Implications and application of the theorem
8.3 Application experiments L. Lo e e
8.3.1 Theapplication
8.3.2 Parallelization strategy L
8.3.3 Applying our methodology
834 Results e

8.4 Appendix: Details of the conversion process
9 Related and complementary work

10 Conclusions and directions for future work
10.1 Summary e e e e e e e e e e e

10.2 Directions for future work

Bibliography

145
146
147
147
148
150
151
152
152
153
154
158

160

163
163
164

166

xi

List of Figures

1.1

2.1

3.1
3.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
74
7.5
7.6

7.7
7.8

Overview of programming models and transformation process.. 5
Commutativity of actionsaand b. oo L. 19
Partitioning a 16 by 16 array into 8 array sections. 72
Partitioning an array and creating shadow copies. 80
A computation of a subset-par-model program. Lo 110
Program for 2-dimensional FFT. 116
Program for 2-dimensional FFT, shared-memory version. 116
Program for 2-dimensional FFT, distributed-memory version. 117
Program for 1-dimensional heat equation. 119
Program for 1-dimensional heat equation, shared-memory version. 120
Program for 1-dimensional heat equation, distributed-memory version. 121
Program for 2-dimensional iterative Poisson solver. 123
Recursive quicksort program.o 124
One-deep quicksort program.o 125
Redistribution: rows to columns. oL oL 132
Boundary exchange. 133
Recursive doubling to compute a reduction (sum). 133
Program for 2-dimensional FFT, version 1. 136
Program for 2-dimensional FFT, version 2. 137

Execution times and speedups for parallel 2-dimensional FFT compared to sequential

2-dimensional FFT for 800 by 800 grid, FFT repeated 10 times, using Fortran with

MPIonthe IBM SP. e 138
Poisson solver, version 1. 140
Poisson solver, version 2. L. e e e e e 141

7.9

7.10

7.11

8.1
8.2

8.3

8.4

8.5

8.6

8.7
8.8

xii
Execution times and speedups for parallel Poisson solver compared to sequential Pois-
son solver for 800 by 800 grid, 1000 steps, using Fortran with MPI on the IBM SP. . 142
Execution times and speedups for 2-dimensional CFD code for 150 by 100 grid, 600
steps, using Fortran with NX on the Intel Delta. Data supplied by Rajit Manohar. . 143

Execution times and speedups for spectral code for 1536 by 1024 grid, 20 steps, using
Fortran M on the IBM SP. Data supplied by Greg Davis. 144
Correspondence between parallel and simulated-parallel program versions. 148

Correspondence between parallel and simulated-parallel program versions of archetype-
based program. e e 151

Execution times and speedups for electromagnetics code (version A) for 34 by 34 by

34 grid, 256 steps, using Fortran M on the IBM SP. 156
Execution times and speedups for electromagnetics code (version A) for 66 by 66 by

66 grid, 512 steps, using Fortran M on the IBM SP. 157
Packaging strategy: overview. Lo 158
Packaging strategy: sequential code. 158
Packaging strategy: desired parallel code. 158

Packaging strategy: revised source code. Lo 159

xiii

List of Tables

8.1 Execution times and speedups for electromagnetics code (version C), for 33 by 33 by

33 grid, 128 steps, using Fortran M on a network of Suns. 155
8.2 Execution times and speedups for electromagnetics code (version C), for 65 by 65 by

65 grid, 1024 steps, using Fortran M on a network of Suns. 155
8.3 Execution times and speedups for electromagnetics code (version C), for 46 by 36 by

36 grid, 128 steps, using Fortran M on a network of Suns. 155
8.4 Execution times and speedups for electromagnetics code (version C), for 91 by 71 by

71 grid, 2048 steps, using Fortran M on a network of Suns. 156

Chapter 1

Introduction

It is almost an article of faith in the parallel-programming community that parallel programming
is significantly more difficult than sequential programming, and that anything one can do to reduce
the difficulty of parallel programming is therefore a good thing. There is less agreement about how
this can best be done; approaches range from new programming languages to compilers that au-
tomatically parallelize sequential programs. The difficulties are perhaps most severe for programs
whose specifications are in terms of ongoing behavior and interaction with an environment, since
such programs more obviously require tools and techniques other than or in addition to those used
for sequential programs. But even programs whose specifications are in terms of the relation between
initial and final states — that is, programs that are implemented in parallel primarily for reasons of
performance — present difficulties in addition to those encountered in developing their sequential
counterparts. This thesis presents a structured approach to the latter class of parallel programs that
allows much of the work of development, reasoning, and testing and debugging to be done using
familiar sequential techniques and tools. This approach takes the form of a simple model of parallel
programming, a methodology for transforming programs in this model into programs for parallel
machines based on the ideas of semantics-preserving transformations and programming archetypes
(patterns), and an underlying operational model providing a unified framework for reasoning about
the requisite transformations. The specific contribution of the thesis is the integration of the op-
erational model, the programming models, and the methodology, all of which build on and exploit
existing work, into a unified theory/practice framework for developing and reasoning about parallel

programs.

1.1 A little history

This work has its origins in two experimental projects, one exploring the use of archetypes or pat-
terns in developing parallel scientific applications, and one exploring the use of semantics-preserving

transformations in parallelizing sequential code.

1.1.1 Experiments with archetypes (patterns)

Our investigation of the use of patterns in developing parallel scientific applications began as a
search for what we called archetypes for parallel scientific computing. By archetype, we mean an
abstraction that captures the common features of a class of problems with common computational
structure. This idea is useful when applied to traditional computer science algorithms (sorting,
searching, graph algorithms, and so forth), so we proposed to experiment with applying it to par-
allel scientific computing. What we found was that the useful commonality tended to focus on
patterns of communication in the parallel versions of applications, so we focused attention on a few
representative classes of problems and developed archetype implementations, each combining tutorial
documentation with a code library encapsulating the communication operations (the “hard parts”
of developing a parallel version of an application). We then used these archetype implementations

in developing example applications and found that they did assist in the development process.

1.1.2 Experiments with stepwise parallelization

Our investigation of the use of semantics-preserving transformations in parallelizing sequential code
consisted of developing a methodology by which a sequential application program could be trans-
formed into an equivalent parallel program via a sequence of small transformations, with all but the
last transformation performed in the sequential domain and the final transformation into the paral-
lel domain justifiable via a formal proof applicable to all programs meeting certain stated criteria.
With this methodology, all but the final transformation could be checked by testing and debugging
in the sequential domain, and since the final transformation had been formally proved to preserve
correctness, there would be no need to debug the parallel program. We applied this methodology to
two application programs and found that indeed debugging was confined to the sequential versions

of the program, with the formally-proved final transformation preserving correctness.

1.1.3 Theoretical framework

We then turned our attention to developing a theoretical framework that would encompass and
support both these investigations. The goal of this theoretical work was something simple and ap-

plicable to widely-used practical languages, and yet mathematically rigorous, that could serve as a

3

theoretical support for the experimental work. Our approach was to develop a model and method-
ology for parallel programming that to a large extent make it possible to develop and reason about
parallel programs using the same methods and tools used to develop and reason about sequential
programs, together with an operational model that allows us to reason formally about aspects that

are not amenable to sequential techniques.

1.2 Related work

1.2.1 Foundations

Sequential programming models and specifications. We define our programming models as
simple extensions to the standard sequential model of Dijkstra [36, 37], Gries [42], and others. We

base our notions of program correctness on the work of Hoare [44] and others.

Program development via stepwise refinement. Our approach to program development is
based on stepwise refinement and program transformations, as described for sequential programs in
the work of Back [6], Gries, and Hoare [44], and for parallel programs in the work of, for example,

Back [5], Martin [56], and Van de Velde [74].

Operational models. Our operational model is based on defining programs as state-transition
systems, as in the work of Chandy and Misra [24], Lynch and Tuttle [52], Lamport [51], Manna and
Pnueli [54], and Pnueli [61].

1.2.2 Related and complementary work

Parallel programming models. Programming models similar in spirit to ours have been pro-
posed by Valiant [73] and Thornley [71]; our model differs in that we provide a more explicit sup-

porting theoretical framework and in the use we make of archetypes.

Automatic parallelization of sequential programs. Our work is in many respects comple-
mentary to efforts to develop parallelizing compilers, for example Fortran D [28] and HPF [43]. The
focus of such work is on the automatic detection of exploitable parallelism, while our work addresses
how to exploit parallelism once it is known to exist. Our theoretical framework could be used to

prove not only manually-applied transformations but also those applied by parallelizing compilers.

Programming skeletons, design patterns, and distributed objects. Our work is also in

some respects complementary to work exploring the use of programming skeletons and patterns in

4

parallel computing, for example that of Cole [27] and Brinch Hansen [15], and even work explor-
ing distributed objects, pC++ [12] for example. We also make use of abstractions that capture
exploitable commonalities among programs, but we use these abstractions to guide a program de-

velopment methodology based on program transformations.

Communication libraries. Much work has been done in developing program libraries intended to
insulate application developers from the details of the parallel architecture on which their programs
are to execute, for example MPI [58]. Our work is complementary to this work in that our archetype-
based libraries of communication operations can be implemented using subsets of these more general

libraries, and in addition to the libraries we provide strategies for their use.

1.3 Our programming model and methodology

As suggested earlier, the goal of our work is to provide assistance in developing parallel programs
whose specifications are like those usually given for sequential programs, in which the specification
describes initial states for which the program must terminate and the relation between initial and

final states.

1.3.1 The arb model: parallel composition with sequential semantics

Our primary programming model, which we call the arb model, is simply the standard sequential
model extended to include parallel compositions of groups of program elements whose parallel com-
position is equivalent to their sequential composition. The name (arb) is derived from UC [7] and is
intended to connote that such groups of program elements may be interleaved in any arbitrary fash-
ion without changing the result. We define a property we call arb-compatibility, and we show that
if a group of program elements is arb-compatible, their parallel composition is semantically equiva-
lent to their sequential composition; we call such compositions arb compositions. Since arb-model
programs can be interpreted as sequential programs, the extensive body of tools and techniques

applicable to sequential programs is applicable to them. In particular:
e Their correctness can be demonstrated formally by using sequential methods.
e They can be refined by sequential semantics-preserving transformations.

e They can be executed sequentially for testing and debugging.

1.3.2 Transformations from the arb model to practical parallel languages

Because the arb composition of arb-compatible elements can also be interpreted as parallel com-

position, arb-model programs can be executed as parallel programs. Such programs may not make

5

effective use of typical parallel architectures, however, so our methodology includes techniques for im-
proving their efficiency while maintaining correctness. We define two subsidiary programming models
that abstract key features of two classes of parallel architectures: the par model for shared-memory
(single-address-space) architectures, and the subset par model for distributed-memory (multiple-
address-space) architectures. We then develop semantics-preserving transformations to convert arb-
model programs into programs in one of these subsidiary models. Intermediate stages in this process
are usually arb-model programs, so the transformations can make use of sequential refinement tech-
niques, and the programs can be executed sequentially. Finally, we indicate how the par model can
be mapped to practical programming languages for shared-memory architectures and the subset par
model to practical programming languages for distributed-memory-message-passing architectures.
Together, these groups of transformations provide a semantics-preserving path from the original
arb-model program to a program in a practical programming language.

Figure 1.1 illustrates this overall scheme. Solid-bordered boxes indicate programs in the various
models; arrows indicate semantics-preserving transformations. A dashed arrow runs from the box
denoting a sequential program to a box denoting an arb-model programs because it is sometimes
appropriate and feasible to derive an arb-model program from an existing sequential program (by
replacing sequential compositions of arb-compatible elements with arb compositions of the same

elements).

sequential programs

programs for
shared-memory
architecture

programs for
distributed-memory
architecture

Figure 1.1: Overview of programming models and transformation process.

6

1.3.3 Supporting framework for proving transformations correct

Some of the transformations indicated in Figure 1.1 — those within the arb model — can be
proved correct using the techniques of sequential stepwise refinement. Others — those between our
different programming models, or from one of our models to a practical programming language —
require a different approach. We therefore define an operational model based on viewing programs
as state-transition systems, give definitions of our programming models in terms of this underlying
operational model, and use it to prove the correctness of those transformations for which sequential

techniques are inappropriate.

1.3.4 Programming archetypes

An additional important element of our approach is that we envision the transformation process
just described as being guided by what we call parallel programming archetypes. An archetype is
an abstraction that captures the commonality of a class of programs with common computational
structure (e.g., the familiar divide-and-conquer of sequential programming); a parallel programming
archetype is such an abstraction for a class of programs whose common features have to do with their
parallel structure (e.g., patterns of interprocess communication). We envision application developers
choosing from a range of archetypes, each representing a class of programs with common features
and providing a class-specific parallelization strategy — that is, a pattern for the shared-memory
or distributed-memory program to be ultimately produced — together with a collection of class-
specific transformations and a code library of communication or other operations that encapsulate

the details of the parallel programs.

1.4 Chapter-by-chapter outline

e Chapter 2 presents our operational model of program semantics and our primary programming

model (the arb model).

e Chapter 3 presents a collection of useful transformations for arb programs. The transfor-
mations chosen include most of those required for the example applications in subsequent

chapters.

e Chapter 4 presents our approach to transforming arb programs into programs for shared-
memory architectures: a programming model (the par model) together with transformations
from the arb model to the par model and from the par model to languages for shared-memory

architectures.

7

Chapter 5 presents our approach to transforming arb programs into programs for distributed-
memory architectures: a programming model (the subset par model) together with trans-
formations from the arb model to the subset par model and from the subset par model to

languages for distributed-memory architectures.

Chapter 6 presents extended examples of arb-model programs and how they can be trans-

formed.

Chapter 7 presents experiments focused on the archetypes aspects of our work, in which we

defined example archetypes and used them to develop applications.

Chapter 8 presents experiments focused on the transformation aspects of our work, in which
we parallelized applications using a sequence of program transformations, with the key trans-

formation formally justified.
Chapter 9 surveys related and complementary work.

Chapter 10 presents conclusions and suggests directions for further research.

Chapter 2

The arb model

As discussed previously in Chapter 1, we are interested in developing and refining parallel programs
to meet sequential-style specifications. The heart of our approach is identifying groups of program
elements that have the useful property that their parallel composition is semantically equivalent to
their sequential composition. We call such a group of program elements arb-compatible.! We can

then employ the following approach to program development:

e Write down the program using sequential constructors and parallel composition (||), but en-
suring that all groups of elements composed in parallel are arb-compatible. We call such a
program an arb-model program, and it can be interpreted as either a sequential program or a

parallel program, with identical meaning.

¢ View the program as a sequential program and operate on it with sequential refinement tech-
niques, which are well-defined and well-understood. In refining a sequential composition whose
elements are arb-compatible, take care to preserve their arb-compatibility. The result is a
program that refines the original program and can also be interpreted as either a sequential or

a parallel program, with identical meaning.

In this chapter, we first present our operational model for parallel programs, the model we will
use for reasoning about programs and program transformations that are not amenable to strictly
sequential reasoning techniques. We then define a notion of arb-compatibility, such that the parallel
composition of a group of arb-compatible program elements is semantically equivalent to its sequen-
tial composition. We then identify restrictions on groups of program elements that are sufficient
to guarantee their arb-compatibility, and we present some properties of parallel compositions of

arb-compatible elements. We give two presentations of this material: one relying mostly on natural

1 As mentioned in Chapter 1, the name (arb) is derived from UC [7] and is intended to connote that such groups
of program elements may be interleaved in any arbitrary fashion without changing the result.

9

language and omitting detailed proofs (Section 2.1 and Section 2.2), and one making more extensive
use of symbolic notation and presenting more detailed proofs (Section 2.7 and Section 2.8).

We then revisit these ideas in the context of two representative programming notations: (1) a
theory-oriented notation, Dijkstra’s guarded-command language [35, 37], where by “theory-oriented”
we mean a notation used primarily as a basis for formal work on program semantics, and (2) a
practical programming notation, Fortran 90 [1, 46], where by “practical programming notation” we
mean a notation used primarily for the development of applications, particularly large-scale ones.
We present our ideas in the context of a theory-oriented notation to demonstrate that they can be
made rigorous in a notation for which a formal semantics is defined. We present our ideas in the
context of a practical programming notation to show that this rigor carries over into the realm of
large-scale application development, at least insofar as the practical notation matches the simpler
theory-oriented notation. Finally, we show the syntactic transformations necessary to execute arb-

model programs sequentially or in parallel.

2.1 Program semantics and operational model

We define programs in such a way that a program describes a state-transition system, and show
how to define program computations, sequential and parallel composition, and program refinement
in terms of this definition. This section presents the material with a minimum of mathematical
notation and only brief sketches of most proofs; Section 2.7 presents the same material formally and

in more detail, including a description (Section 2.7.1) of notational conventions.

2.1.1 Overview

Treating programs as state-transition systems is not a new approach; it has been used in work such
as Chandy and Misra [24], Lynch and Tuttle [52], Lamport [51], Manna and Pnueli [54], and Pnueli
[61] to reason about both parallel and sequential programs. The basic notions of a state-transition
system — a set of states together with a set of transitions between them, representable as a directed
graph with states for vertices and transitions for edges — are perhaps more helpful in reasoning
about parallel programs, particularly when program specifications describe ongoing behavior (e.g.,
safety and progress properties) rather than relations between initial and final states, but they are
also applicable to sequential programs. Our operational model builds on this basic view of program
execution, presented in a way specifically aimed at facilitating the stating and proving of the main
theorems of this chapter (that for groups of program elements meeting stated criteria, their parallel
and sequential compositions are semantically equivalent) and subsequent chapters.

Thus, we define programs in terms of sets of variables and sets of program actions. A program’s

variables define a set of states, one for each assignment of values to variables; the variables can

10

include not only the “visible” variables of imperative programming languages but also “hidden”
variables such as program counters. A program action is defined as a relation between its input
variables and its output variables; each program action generates a set of state transitions. Program
actions are atomic. The system can be viewed as a graph, with each state a vertex and each state
transition a directed edge. A computation of the program then corresponds to a path in the graph,
starting from one of the program’s initial states and — if the computation terminates — ending in

a state with no outgoing edges.

2.1.2 Definitions

Definition 2.1 (Program).

We define a program P as a 6-tuple (V, L, InitL, A, PV, PA), where

e V is a finite set of typed variables. V defines a state space in the state-transition system; that
is, a state is given by the values of the variables in V. In our semantics, distinct program

variables denote distinct atomic data objects; aliasing is not allowed.

o L C V represents the local variables of P. These variables are distinguished from the other
variables of P in two ways: (1) The initial states of P are given in terms of their values, and (2)
they are invisible outside P — that is, they may not appear in a specification for P, and they

may not be accessed by other programs composed with P, either in sequence or in parallel.
e InitL is an assignment of values to the variables of L, representing their initial values.

e A is a finite set of program actions. A program action describes a relation between states of its
input variables (those variables in V' that affect its behavior, either in the sense of determining
from which states it can be executed or in the sense of determining the effects of its execution)
and states of its output variables (those variables whose value can be affected by its execution).

Thus, a program action is a triple (I,, 0,4, R,) in which
— I, C V represents the input variables of A.

— O, C V represents the output variables of A.

— R, is a relation between I,-tuples and O,-tuples.

e PV CV are protocol variables that can be modified only by protocol actions (elements of PA).
(That is, if v is a protocol variable, and a = (I, O,, R,) is an action such that v € O,, a must
be a protocol action.) Such variables and actions are not needed in this chapter but are useful

in defining the synchronization mechanisms of Chapter 4 and Chapter 5; the requirement that

11

protocol variables be modified only by protocol actions simplifies the task of defining such

mechanisms. Observe that variables in PV can include both local and non-local variables.

e PA C A are protocol actions. Only protocol actions may modify protocol variables. (Protocol

actions may, however, modify non-protocol variables.)

Remarks about Definition 2.1.

e Program action a = (I,,0,, R,) defines a set of state transitions, each of which we write in
the form s % s', as follows: s — s’ if the pair (4, 0), where i is a tuple representing the values
of the variables in I, in state s and o is a tuple representing the values of the variables in O,

in state s', is an element of relation R,.

e We can also define a program action based on its set of state transitions, by inferring the
required I,, O,, and R,. Details are given in the remarks following Definition 2.1’ in Sec-

tion 2.7.2.

Examples of Definition 2.1.

e As an example, consider the definition of program skip (Definition 2.29) in Section 2.9: The
program has a single variable, Eng;p, with an initial value of true, and a single action that
maps the state s in which Eng, is true to the state s’ in which Fng), is false. All of the
commands and constructs we define have an analogous “enabling” variable, which is true

exactly when the command or construct is enabled — that is, allowed to begin execution.

e Other simple examples include the remaining commands of Section 2.9.1. Observe that abort is

unusual in that it never sets its enabling flag to false and hence (as intended) never terminates.

Definition 2.2 (Initial states).

For program P, s is an initial state of P if, in s, the values of the local variables of P have the values

given in InstL.

O

12

Definition 2.3 (Enabled).

For action a and state s of program P, we say that a is enabled in s exactly when there exists

program state s' such that s = s'.

O

Remarks about Definition 2.3.

e If we view the program’s state-transition system as a graph, a program action is enabled in
state s if there is an outgoing edge corresponding to the action from the vertex corresponding

to s.

Definition 2.4 (Computation).

If P=(V,L, InitL, A, PV, PA), a computation of P is a pair
C = (s0,(j: 1 <j < N:(ay,s5)))

in which
e g is an initial state of P.

o (j:1<j< N:(aj,s;)) is asequence of pairs in which each a; is a program action of P, and
for all j, sj_1 Y sj. We call these pairs the state transitions of C', and the sequence of actions

a; the actions of C.

N can be a non-negative integer or oo. In the former case, we say that C is a finite or
terminating computation with length NV + 1 and final state sy. In the latter case, we say that

C is an infinite or nonterminating computation.

e If C is infinite, the sequence (j : 1 < j : (a;, s;)) satisfies the following fairness requirement:

If, for some state s; and program action a, a is enabled in s;, then eventually either a occurs

in C or a ceases to be enabled.

13

Remarks about Definition 2.4.

e As noted earlier, if we view the program’s state-transition system as a graph, a computation
corresponds to a path through the graph, following directed edges (actions) between vertices

(states).

Definition 2.5 (Terminal state).

We say that state s of program P is a terminal state of P exactly when there are no actions of P

enabled in s.

O

Remarks about Definition 2.5.

o If we view the program’s state-transition system as a graph, a terminal state is one with no

outgoing edges.

Definition 2.6 (Maximal computation).

We say that a computation of C of P is a mazimal computation exactly when either (1) C' is infinite

or (2) C is finite and ends in a terminal state.

O

Definition 2.7 (Affects).

For predicate ¢ and variable v € V, we say that v affects ¢ exactly when there exist states s and &/,

identical except for the value of v, such that ¢.s # ¢.s'.

For expression E and variable v € V, we say that v affects E exactly when there exists value k for

E such that v affects the predicate (E = k).

O

14

2.1.3 Specifications and program refinement

The usual meaning of “program P is refined by program P'” is that program P’ meets any specifi-
cation met by P. We will confine ourselves to specifications that describe a program’s behavior in
terms of initial and final states, giving (1) the set of initial states s such that the program is guaran-
teed to terminate if started in s, and (2) the relation, for terminating computations, between initial
and final states. An example of such a specification is a Hoare total-correctness triple. In terms of
our model, initial and final states correspond to assignments of values to the program’s variables;
we make the additional restriction that specifications do not mention a program’s local variables L.
We make this restriction because otherwise program equivalence can depend on internal behavior
(as reflected in the values of local variables), which is not the intended meaning of equivalence.? We
write P C P’ to denote that P is refined by P'; if P C P’ and P' C P, we say that P and P’ are

equivalent, and write P ~ P'.

Definition 2.8 (Equivalence of computations).

For programs P; and P» and a set of typed variables V such that V C V; and V C V, and for every
v in V, v has the same type in all three sets (V, Vi, and V3), we say that computations C; of P;

and Cy of P, are equivalent with respect to V exactly when:

e For every v in V, the value of v in the initial state of C; is the same as its value in the initial

state of Cs.

e Either (1) both Cy and C; are infinite, or (2) both are finite, and for every v in V, the value

of v in the final state of C; is the same as its value in the final state of Cs.

We can now give a sufficient condition for showing that P; C P, in our semantics.

Theorem 2.9 (Refinement in terms of equivalent computations).

For P, and P, with (V1 \ L1) C (V» \ La) (where \ denotes set difference), P, C P, when for every
maximal computation Cy of Ps there is a maximal computation C; of P; such that C; is equivalent

to Co with respect to (V1 \ L1).

O

2For example, if specifications were allowed to mention local variables, sequential and parallel composition would
not be associative, since different ways of parenthesizing the composition lead to different sets of local variables.

15

Proof of Theorem 2.9.

This follows immediately from Definition 2.8, the usual definition of refinement, and our restriction

that program specifications not mention local variables.

O

2.1.4 Program composition

We now present definitions of sequential and parallel composition in terms of our model. First we
need some restrictions to ensure that the programs to be composed are compatible — that is, that
it makes sense to compose them:

Definition 2.10 (Composability of programs).

We say that a set of programs Py, ..., Py can be composed exactly when

e any variable that appears in more than one program has the same type in all the programs in
which it appears (and if it is a protocol variable in one program, it is a protocol variable in all

programs in which it appears),

e any action that appears in more than one program is defined in the same way in all the

programs in which it appears, and

o different programs do not have local variables in common.

Remarks about Definition 2.10.

e If it should be the case that for some j # k, the local variables of P; and P overlap, observe
that we can rename (in P; or Py) any variable v in both sets of local variables without changing

the meaning of the modified program.

16

2.1.4.1 Sequential composition

The usual meaning of sequential composition is this: A maximal computation of P;; P is a maximal
computation C; of P; followed (if Cy is finite) by a maximal computation Cs of Py, with the obvious
generalization to more than two programs. We can give a definition with this meaning in terms of
our model by introducing additional local variables En;, ..., Eny that ensure that things happen in
the proper sequence, as follows: Actions from program P; can execute only when En; is true. Eng
is set to true at the start of the computation, and then as each P; terminates it sets En; to false

and En;i to true, thus ensuring the desired behavior.

Definition 2.11 (Sequential composition).

If programs P, ..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), can be composed (Definition 2.10),
we define their sequential composition (Pi;...; Py) = (V, L, InitL, A, PA, PV) thus:

e V=ViU...UVNyUL.

e L =0L1U...ULyU{Enp,Eny,...,Enn}, where Enp, Eny,...,Eny are distinct Boolean

variables not otherwise occurring in V:
Enp is true in the initial state of the sequential composition and false thereafter.

For all j, En;j is true during (and only during) the part of the computation corresponding to

execution of P;.

o InitL is defined thus: The initial value of Enp is true. For all j, the initial value of En; is

false, and the initial values of variables in L; are those given by InitL;.
e A consists of the following types of actions:

— Actions corresponding to actions in A;, for some j: For a € A;, we define a’ identical to
a except that a' is enabled only when En; = true.

— Actions that accomplish the transitions between components of the composition:
Initial action ag, takes any initial state s, with Enp = true, to a state s’ identical except
that Enp = false and En, = true. s’ is thus an initial state of P;.
For j with 1 < j < N, action ag; takes any terminal state s of P;, with En; = true, to a
state s’ identical except that En; = false and Enjy1 = true. s’ is thus an initial state of
Pjy1.
Final action ar, takes any terminal state s of Py, with Eny = true, to a state s’ identical

except that Eny = false. s’ is thus a terminal state of the sequential composition.

e PV =PV,U...UPVy.

17

e PA contains exactly those actions a' derived (as described above) from the actions a of

PA; U...UPAy.

Remarks about Definition 2.11.

e Sequential composition as just defined is associative, since our definition of program equivalence

(two-sided refinement) excludes local variables.

2.1.4.2 Parallel composition

The usual meaning of parallel composition is this: A computation of P;||P, defines two threads of
control, one each for P; and P,. Initiating the composition corresponds to starting both threads;
execution of the composition corresponds to an interleaving of actions from both components; and
the composition is understood to terminate when both components have terminated. We can give
a definition with this meaning in terms of our model by introducing additional local variables that
ensure that the composition terminates when all of its components terminate, as follows: As for
sequential composition, we introduce additional local variables Enq, ..., Eny such that actions from
program P; can execute only when En; is true. For parallel composition, however, all of the En;’s
are set to true at the start of the computation, so computation is an interleaving of actions from
the P;’s. As each P; terminates, it sets the corresponding En; to false; when all are false, the
composition has terminated. Observe that the definitions of parallel and sequential composition are

almost identical; this greatly facilitates the proofs of Lemma 2.17 and Lemma, 2.18.

Definition 2.12 (Parallel composition).

If programs Py, ..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), can be composed (Definition 2.10),
we define their parallel composition (Py||...||Pny) = (V, L, InitL, A, PV, PA) thus:

e V=V,U...UVyUL.

e L=I0LU...ULyU{Enp,Eny,...,Enn}, where Enp, Eny,...,Eny are distinct Boolean
variables not otherwise occurring in V.

Enp is true in the initial state of the parallel composition and false thereafter.

For all j, En; is true until the part of the composition corresponding to P; has terminated.

18

o InitL is defined thus: The initial value of Enp is true. For all j, the initial value of En; is

false, and the initial values of variables in L; are those given by InitL;.
e A consists of the following types of actions:

— Actions corresponding to actions in A;, for some j: For a € A;, we define a' identical to
a except that a' is enabled only when En; is true.

— Actions that correspond to the initiation and termination of the components of the com-
position:
Initial action ag, takes any initial state s, with Enp = true, to a state s’ identical except
that En; = true for all j. s is thus an initial state of P;, for all j.
For j with 1 < j < N, action a7, takes any terminal state s of P;, with En; = true, to a
state s’ identical except that En; = false. A terminating computation of P contains one
execution of each ar;; after execution of ag; for all j, the resulting state s’ is a terminal

state of the parallel composition.
e PV=PV,U...UPVy.

e PA contains exactly those actions a' derived (as described above) from the actions a of

PAL U...UPAy.

Remarks about Definition 2.12.

e Parallel composition as just defined is associative and commutative, since our definition of

program equivalence (two-sided refinement) excludes local variables.

2.2 arb-compatibility and arb composition

We now turn our attention to defining sufficient conditions for a group of programs Pi,..., Py to

have the property we want, namely:

This section presents the material with a minimum of mathematical notation and only brief sketches
of most proofs; Section 2.8 presents the same material in more detail, with more complete proofs

and with more use of mathematical notation.

19

2.2.1 Definition of arb-compatibility

We first define a key property of pairs of program actions.

Definition 2.13 (Commutativity of actions).

Actions a and b of program P are said to commute exactly when the following two conditions hold:

e Execution of b does not affect (in the sense of Definition 2.7) whether a is enabled, and vice

versa.

e It is possible to reach sy from s; by first executing a and then executing b exactly when it is
also possible to reach s2 from s; by first executing b and then executing a, as illustrated in
Figure 2.1. In the figure, a and b are both nondeterministic, but observe that the graph has
the property that if we can reach a state (sp or sj) by executing first a and then b, then we

can reach the same state by first executing b and then a, and vice versa.

Figure 2.1: Commutativity of actions a and b.

Remarks about Definition 2.13.

e a and b commute exactly when a and b have the diamond property [25, 53].

We now define the desired condition.

20

Definition 2.14 (arb-compatible).

Programs Py, ..., Py are arb-compatible exactly when they can be composed (Definition 2.10) and

any action in one program commutes (Definition 2.13) with any action in another program.

O

2.2.2 Equivalence of sequential and parallel composition for arb-compatible

components

We now show that arb-compatibility guarantees the property of interest, namely the equivalence
of parallel and sequential composition. We sketch the proof here; a detailed proof is given in

Section 2.8.2.

Theorem 2.15 (Parallel ~ sequential for arb-compatible programs).

If P,..., Py are arb-compatible, then

(Pi|...||IPx) ~ (Pt;...; Py) .

Proof of Theorem 2.15.

We write Pp = (P1]|...||Pn) and Ps = (Pi;...; Py). From Definition 2.11 and Definition 2.12,
(Ve =Vs)A (Lp = Lg) A (InitLp = InitLs) A (PVp = PVg) A (PAp = PAg) ,

so we write Pp = (V, L, InitL, Ap, PV,PA) and Ps = (V, L, InitL, As, PV ,PA). We proceed as

follows:

e We first show (Lemma 2.17) that for every maximal computation Cg of Pg there is a maximal
computation Cp of Pp with Cg equivalent to Cp with respect to V' \ L. From Theorem 2.9,
this establishes that Pp C Ps.

e We then show (Lemma 2.18) the converse: that for every maximal computation Cp of Pp
there is a maximal computation Cs of Ps with Cp equivalent to Cs with respect to V' \ L.

From Theorem 2.9, this establishes that Ps C Pp.

e We then conclude that Pp ~ Pg, as desired.

21

We begin by proving the following useful lemma:

Lemma 2.16 (Reordering of computations).

Suppose that Pi,..., Py are arb-compatible and Cp is a finite (not necessarily maximal) compu-
tation of Pp = (Pi]|...||Pn) containing a successive pair of transitions ((a, sp), (b, Sn+1)) such that
a and b commute. Then we can construct a computation C'p of Pp with the same initial and final
states as C'p, and the same sequence of transitions, except that the pair ((a, s5), (b, sn+1)) has been

replaced by the pair ((b, s},), (@, Sn+1))-

O

Proof of Lemma 2.16.

This is an obvious consequence of the commutativity (Definition 2.13) of a and b: If 5,,_; — s,, and
Sn LY Sn+1, then there exists a state s/, such that s,_; LA st and s/, 4 Sn+1, SO wWe can construct a

computation as described.

O

Lemma 2.17 (Sequential refines parallel).

For Pp and Pg defined as in Theorem 2.15, if C'g is a maximal computation of Pg, there is a maximal

computation Cp of Pp with Cg equivalent to Cp with respect to V' \ L.

O

Proof of Lemma 2.17.

The proof of this lemma is straightforward for finite computations: We have defined parallel and se-
quential composition in such a way that any maximal finite computation of the parallel computation
maps to an equivalent maximal computation of the parallel composition.

For nonterminating computations, we can similarly map a computation of the sequential compo-
sition to an infinite sequence of transitions of the parallel composition. However, the result may not
be a computation of the parallel composition because it may violate the fairness requirement: If P;
fails to terminate, no action of Pj1; can occur, even though in the parallel composition there may
be actions of P;;1 that are enabled. If this is the case, however, we can use the principle behind

Lemma 2.16 to transform the unfair sequence of transitions into a fair one.

22

Details are given in the proof of Lemma 2.17' in Section 2.8.2.

Lemma 2.18 (Parallel refines sequential).

For Pp and Pg defined as in Theorem 2.15, if Cp is a maximal computation of Pp, there is a maximal

computation Cs of Pg such that Cs is equivalent to Cp with respect to V' \ L.

O

Proof of Lemma 2.18.

For terminating computations, the proof is straightforward: Given a maximal computation of the
parallel composition, we first apply Lemma 2.16 repeatedly to construct an equivalent (also maximal)
computation of the parallel composition in which, for j < k, all transitions corresponding to actions
of P; occur before transitions corresponding to actions of Pj. As in the proof of Lemma 2.17, this
computation then maps to an equivalent maximal computation of the sequential composition.

For nonterminating computations, we can once again use the principle behind Lemma 2.16 to
construct a sequence of transitions (of the parallel composition) in which, for j < k, all transitions
corresponding to actions of P; occur before transitions corresponding to actions of P,. We then map
this sequence of transitions to a computation of the sequential composition.

Details are given in the proof of Lemma 2.18' in Section 2.8.2.

2.2.3 Definition of arb composition

For arb-compatible programs P, ..., Py, then, we know that

(Pi|...||Px) ~ (Pt;...; Py) .

To denote this parallel /sequential composition of arb-compatible elements, we write arb(Py, ..., Py),
where

arb(Py,...,Px) ~ (Pi]|...||Py)

or equivalently

arb(Pl,...,PN) ~ (Pl;...;PN) .

We refer to this notation as “arb composition”, although it is not a true composition operator since

it is properly applied only to groups of elements that are arb-compatible. We regard it as a useful

23

form of syntactic sugar that denotes not only the parallel/sequential composition of P, ..., Py but

also the fact that Py, ..., Py are arb-compatible.

We also define an additional bit of syntactic sugar, seq(Px, ..., Py), such that

seq(Py,...,Pn) ~ (Pi;...; PN) .

We will sometimes use this notation to improve the readability of nestings of sequential and arb

composition.

2.2.4 Properties of arb composition

arb composition has the following properties.

Theorem 2.19 (Associativity of arb composition).
arb composition is associative.

O

Proof of Theorem 2.19.

We must show that if Py, P>, P; are arb-compatible, then

arb(P;,arb(P;, P3)) ~ arb(arb(P;, P»), P;) .

This theorem is an obvious consequence of the definition of arb composition (Definition 2.14) and
the associativity of parallel composition, except that it is not immediately obvious that the two
sides of the claimed equivalence make sense. Recalling that we only write arb(Py, ..., Py) when

Py, ..., Py are arb-compatible, the equivalence makes sense only if:
e P, and P, are arb-compatible, as are P, and Ps.
e P, and arb(P,, P3) are arb-compatible, as are P; and arb(Py, P»).

The former is an obvious corollary of the definition of arb-compatibility (Definition 2.14): If
Py,...,Py are arb-compatible, then clearly the elements of any subset of Pi,..., Py are arb-
compatible as well. The latter follows from the definitions of arb-compatibility and parallel com-
position (Definition 2.12): arb(P,, P;) ~ (P2||P3), and then from the definitions it is clear that
(P»||P3) and P, are arb-compatible. The case of arb(Py, P;) and P; is exactly analogous. So now

we can proceed®:

3For an explanation of this calculational proof style, refer to Section 2.7.1

24
arb(Py,,arb(P;, P3))
~ { definitions }
(Pr1||(Ps||Ps))

~ { associativity of parallel composition }
((Pu]|P2)||P5)
~ { definitions }

arb(arb(Py, P), P;)

Theorem 2.20 (Commutativity of arb composition).
arb composition is commutative.

O

Proof of Theorem 2.20.

This follows directly from the equivalence of arb and parallel composition and the commutativity

of parallel composition.

O

Theorem 2.21 (Refinement by parts of arb composition).

We can refine any component of an arb composition to obtain a refinement of the whole composition.
That is, if Py,..., Py are arb-compatible, and, for each j, P; C P}, and Pj,..., Py are arb-

compatible, then

arb(Py,...,Pn)

M

arb(P/,..., Py)

25

Proof of Theorem 2.21.

arb(Py,...,Py)
~ { Theorem 2.15 }

(Pi;-..; Pn)

C { refinement by parts for sequential programs }
(Pf;-..; Py)

~ { Theorem 2.15 and hypothesis }

arb(P},...,Py)

Remarks about Theorem 2.21.

e This theorem, as mentioned earlier, is the justification for our program-development strategy,

in which we apply the techniques of sequential stepwise refinement to arb-model programs.

2.2.5 A simpler sufficient condition for arb-compatibility

The definition of arb-compatibility given in Definition 2.14 is the most general one that seems to
give the desired properties (equivalence of parallel and sequential composition, and associativity and
commutativity), but it may be difficult to apply in practice. We therefore give a more-easily-checked

sufficient condition for programs Py,..., Py to be arb-compatible.

First, we give some preliminary definitions:

Definition 2.22 (Variables read by P).

For program P, we say that a variable v is read by P if it is an input variable for some action a of

P; we write VR to denote the set of all such variables.

O

Definition 2.23 (Variables written by P).

For program P, we say that a variable v is written by P if it is an output variable for some action a

of P; we write VW to denote the set of all such variables.

26

We can now give the sufficient condition, preceded by a preliminary definition.

Definition 2.24 (Programs that share only read-only variables).

If programs Py, ..., Py can be composed (Definition 2.10), and for j # k, no variable written by P;

is read or written by Py, then we say that P, ..., Py share only read-only variables.

O

Theorem 2.25 (arb-compatibility and shared variables).

If programs Py, ..., Py share only read-only variables (Definition 2.24), then P,..., Py are arb-

compatible.

O

Proof of Theorem 2.25.

Given programs Py, ..., Py that satisfy the condition, it suffices to show that any two actions from
distinct components P; and P, commute. The proof is straightforward; a detailed version appears

as the proof of Theorem 2.25' in Section 2.8.

O

2.3 arb composition and programming notations

A key difficulty in applying our methodology for program development is in identifying groups
of program elements that are known to be arb-compatible. The difficulty is exacerbated by the
fact that many programming notations have a notion of program variable that is more difficult to
work with than the notion we employ for our formal semantics. In our semantics, variables with
distinct names address distinct data objects. In many programming notations, this need not be
the case, and the difficulty of detecting situations in which variables with distinct names overlap
(aliasing) complicates automatic program optimization and parallelization just as it complicates the
application of our methodology. Syntactic restrictions sufficient to guarantee arb-compatibility do
not seem in general feasible, but we believe that the semantic restrictions described in this section
are a step in the right direction, by helping programmers to make conservative estimates of which

variables are being accessed, that is, to identify a superset of the variables being accessed.

27

Our approach is to define, for every program P, sets of variables ref.P and mod.P, such that
ref.P D VRp and mod.P DO VW p. That is, mod.P contains all atomic data objects* whose value
is changed in some computation of P, and ref.P contains all atomic data objects referenced in P,
that is, all data objects whose value is “read” during some computation of P. We also define, for
every expression F, an analogous ref.E such that ref.E contains all atomic data objects whose
value affects E. Note that it may be the case that ref.P D VRp and mod.P O VW p — that is,
ref.P and mod.P may be defined more broadly than necessary. Note also that it is not necessarily
the case that mod.P C ref.P.

We can then state restrictions in terms of ref and mod sufficient to guarantee arb-compatibility:

Theorem 2.26 (arb-compatibility in terms of ref and mod).

Program blocks Pi,..., Py are arb-compatible when, for all j # &k, mod.P; does not intersect

ref.P, U mod.P;.

O

Proof of Theorem 2.26.
This follows immediately from Theorem 2.25.

O

Remarks about Theorem 2.26.

e It is important to note again that ref and mod refer to data objects — i.e., memory locations
— rather than variable names. In determining which variables to include, users must consider
not only questions of aliasing but also the presence of “hidden” variables, examples of which
range from the COMMON-block variables of Fortran to the hidden variables often involved in
file access. (For example, if program P accesses a file sequentially, mod.P should include a
variable representing the file, since concurrent attempts by two programs to read the same file

result in program actions that do not meet the commutativity test for arb-compatibility.)

4An atomic data object is as defined in our semantics or, equivalently, in HPF [43]: one that contains no subobjects
— e.g., a scalar data object or a scalar element of an array.

28

2.4 arb composition and Dijkstra’s guarded-command lan-
guage

2.4.1 Dijkstra’s guarded-command language and our model

It is straightforward to define the commands and constructors of Dijkstra’s guarded-command lan-

guage [35, 37] in terms of our model. We sketch such definitions in Section 2.9.

2.4.2 Conditions for arb-compatibility

Giving syntactic restrictions that we know guarantee arb-compatibility seems less problematical
in Dijkstra’s guarded-command language than in a large practical programming language, simply
because Dijkstra’s guarded-command language is a small and well-understood language. Neverthe-
less, there is no guarantee that variables with distinct names in fact address distinct data objects,
so problems with aliasing are possible. We nonetheless give some examples of defining mod.P
and ref.P for some of the constructs of Dijkstra’s guarded-command language, noting that these

examples work only if distinct variable names in fact address distinct data objects.

mod.skip = {}

mod.abort = {}

mod.(z := E) = {z}

(P=s1;...;8n) =
(mod.P = (mod.s; U...Umod.sy))

(P=ifby = s1[] ... [Jb~n — sy fi)=
(mod.P = (mod.s; U...Umod.sy)))

(P=doby — s1[]...[Jb~n — snod)=
(mod.P = (mod.s; U...Umod.sy))

ref.E = {v :: vis named in E}
ref.skip = {}
ref.abort = {}
ref.(z := E) =ref .E
(P=s1;...;88) =
(ref.P = (ref.s;U...Uref.sy))
(P=ifby = s1[] ... [[b~n — snfi) =
(ref.P = (ref.by U...Uref.by) U (ref.s; U...Uref.sn))
(P=doby = s1[] ... []b~n — syod)=
(ref.P = (ref.by U...Uref.by) U (ref.s; U...Uref.sy))

29
2.4.3 Examples of arb composition
Composition of assignments

This example composes two simple assignment commands.

arb(a:=1,b:=2)

Composition of sequential blocks

This example composes two sequences, the first assigning to a and b and the second assigning to ¢

and d.

arb(seq(a :=1,b:= a),seq(c := 2,d := ¢))

Invalid composition

The following example is not a valid arb composition; the two assignments are not arb-compatible.

arb(a:=1,b:=a)

2.5 arb composition and Fortran 90

2.5.1 Fortran 90 and our model

Giving a formal definition of the semantics of a large practical programming language such as
Fortran 90 [1, 46] is far from trivial. We observe, however, that the well-understood constructs of
Dijkstra’s guarded-command language have, when deterministic, analogous constructs in Fortran
90 (as in many other practical languages), and that formally-justified results derived in Dijkstra’s
guarded-command language apply to Fortran 90 programs insofar as the Fortran 90 programs limit
themselves to these analogous constructs. Difficulties in applying our work to Fortran 90 fall into

two categories:

Irregular control structures. Giving a formal definition of the semantics of less-than-disciplined
control structures such as GOTO is troublesome but possible. However, our definitions of sequential
and parallel composition make sense only for self-contained program blocks, where a self-contained
block is one that contains neither a GOTO whose target lies outside the block nor a label that is
the target of a GOTO outside the block. We observe that our results on arb composition apply to
compositions of self-contained blocks; we do not attempt to give a meaning for composition of blocks

that are not self-contained.

30

Aliased and hidden variables. Fortran, particularly FORTRAN 77, is notorious for making it
difficult to determine from the program text which variables are accessed or modified: Variables with
different names may reference the same location (aliasing, as a result of EQUIVALENCE statements or
of the use of different array indices with the same value), and references to COMMON-block and other
“hidden” variables may be difficult to determine without interprocedural analysis. Our results on
arb composition apply provided it is known to the programmer exactly which variables are being
addressed in a particular program. Inferring such information (which variables are being addressed)
by means of syntactic analysis is not trivial — if it were, parallelizing compilers would be easier to
produce — but we believe that it is feasible for programmers to make such determinations manually

for programs written in a disciplined style or thoroughly documented.

2.5.2 Conditions for arb-compatibility

As noted in the preceding section, the general problem of determining which variables a program
element references and modifies does not seem to be readily amenable to syntactic analysis. We give

here some examples of defining mod.P and ref.P for some example programs.

Simple example

Given the following program block p:
integer x, y, z

X=y+z

we have
mod.p = {x}
ref.p = {y, z}

Example with COMMON block

Given the following program block q:
integer u, v

call gqsub(u, v)

and the following subprogram gsub:

31

subroutine qsub(x, y)
integer x, y

common /qcom/ ¢
integer c

X = 2%y

c = ct+l

end subroutine

we have:
mod.q = {u,c}
ref.q = {v,c}

This is an example of a program in which there is no obvious way to determine by syntactic analysis
(without interprocedural analysis, which may not be feasible) that a call to a subprogram (gsub,

called from q) modifies a “hidden” variable (COMMON-block variable c).

2.5.3 Notation

For Fortran 90, we provide a different notation for arb composition and explicit sequential com-
position, one that is analogous to the other constructs of Fortran 90. This notation allows us to
write programs in the arb model that can be easily, even mechanically, transformed into programs

in languages based on Fortran 90, as described in Section 2.6.

2.5.3.1 arb composition

For arb-compatible programs P, ..., Py, we write their arb composition thus:

arb

P_1

P_2

P_N

end arb

2.5.3.2 seq composition

For any programs P, ..., Py, we write their sequential composition thus:

32

seq

P_N

end seq

Observe that sequential composition is the default; that is, statements are composed sequentially
unless they are explicitly composed using parallel composition or one of its restricted forms, arb

and par. (par composition is defined in Chapter 4.)

2.5.3.3 arball

To allow us to express the arb composition of, for example, the iterations of a loop, we define an
indexed form of arb composition, with syntax modeled after that of the FORALL construct of High
Performance Fortran [43], as follows. This notation is syntactic sugar only, and all theorems that

apply to arb composition apply to arball as well.

Definition 2.27 (arball).

If we have N index variables i1, ..., iy, with corresponding index ranges i;_start < i; < i;_end, and

program block P such that P does not modify the value of any of the index variables — that is,

mod.P N {i1,...,in} = {} — then we can define an arball composition as follows:

For each tuple (z1,...,2zn) in the cross product of the index ranges, we define a correspond-
ing program block P(xy,...,zN) by replacing index variables i1, ...,ixy with corresponding values
Z1,---,2n- If the resulting program blocks are arb-compatible, then we write their arb composition
as follows:

arball (i_1 = i_1_start : i_1_end , ..., i_N = i_N_start : i_N_end)

P(x_1, ..., x_N)
end arball

Remarks about Definition 2.27.

e Observe that the body of the arball composition can be a sequential composition. We do not

require that the sequential composition be explicit, as illustrated in the next-to-last example.

33

2.5.4 Examples of arb composition
Composition of assignments

This example composes two simple assignment commands.

arb
a=1
b=2
end arb

Composition of sequential blocks

This example composes two sequences, the first assigning to a and b and the second assigning to c

and 4.
arb
seq
a=1
b=a
end seq
seq
c=2
d =c
end seq
end arb

Invalid composition

The following example is not a valid arb composition; the two assignments are not arb-compatible.

arb

o
1}
I

end arb

34

Invalid composition because of aliasing

The following example is not a valid arb composition; because of the EQUIVALENCE statement the

two assignments are not arb-compatible.

equivalence (a, b)

arb
a=1
b=2
end arb

Composition of assignments (arball)

The following example composes twenty assignments, one for each pair of values for i and j:
arball (i = 1:4, j = 1:5)
a(i,j) = i+j

end arball

That is, it is equivalent to the following:

arb
a(l,1) = 1+1
a(2,1) = 2+1
a(4,1) = 4+1
a(1,2) = 1+2
a(4’5) = 4+5
end arb

Composition of sequential blocks (arball)

The following example composes ten sequences, each assigning to one element of a and one element

of b.

35

arball (i = 1:10)

seq
a(i) = 1
b(i) = a(i)
end seq
end arball

As noted in the remarks following Definition 2.27, if the body of the arball composition is a sequential
composition, we do not require that the sequential composition be explicit; that is, this example
could also be written:

arball (i = 1:10)

a(i) = i
b(i) = a(i)
end arball

without changing its meaning.

Invalid composition (arball)

The following example is not a valid arball; the ten assignment statements it defines are not arb-
compatible.
arball (i = 1:10)
a(i+1) = a(i)
end arball

2.6 Execution of arb-model programs

Since for arb-compatible program elements, their arb composition is semantically equivalent to their
parallel composition and also to their sequential composition, programs written using sequential
commands and constructors plus (valid) arb composition can, as noted earlier, be executed either
as sequential or as parallel programs with identical results.® In this section we discuss how to do

this in the context of practical programming languages.

5Programs that use arb to compose elements that are not arb-compatible cannot, of course, be guaranteed to
have this property. As discussed in Section 2.2.3, we assume that the arb composition notation is applied only to
groups of program elements that are arb-compatible; it is the responsibility of the programmer to ensure that this is
the case.

36

2.6.1 Sequential execution

A program in the arb model can be executed sequentially; such a program can be transformed
into an equivalent program in the underlying sequential notation by replacing arb composition with
sequential composition. For Fortran 90, this is done by removing arb and end arb and transforming

arball into nested DO loops, as illustrated by the following examples.

Combination of arb and arball

The following program block
arb
arball (i = 2:N-1)
a(i) = 0
end arball
a(1)
a(N)

1
1

end arb

is equivalent to the sequential block
do i =2, N-1
a(i) =0
end do
a(l) =1
a(N)

1]
e

Observe that the loop could equally well be executed in reverse order (do i = N-1, 2, -1).

arball with multiple indices

The following program block
arball (i = 1:N, j = 1:M)
call p(i, j)
end arball

is equivalent to the sequential block

37

doi=1, N
do j=1, M
call p(i, j)
end do
end do

2.6.2 Parallel execution

A program in the arb model can be executed on a shared-memory-model parallel architecture given
a language construct that implements general parallel composition as defined in Definition 2.12. In
general parallel composition, each element of the composition corresponds to a thread; initiating
the composition corresponds to creating a thread for each element and allowing them to execute
concurrently, with the composition terminating when all of its component threads have terminated.
Language constructs consistent with this form of composition include the par and parfor constructs
of CC++ [21, 19], the INDEPENDENT directive of HPF [43], and the PARALLEL DO and PARALLEL
SECTIONS constructs of the Fortran X3H5 proposal [3].

2.6.2.1 Parallel execution using HPF

An arb-model program in which all arb compositions are of the arball form can be transformed
into an equivalent program in HPF by replacing arball with forall and preceding each such block

with an INDEPENDENT directive, as illustrated in the following examples.

Composition of assignments

The following program block
arball (i = 1:N, j = 1:M)
a(i,j) = i+j
end arball
is equivalent to the following HPF program segment

'HPF$ INDEPENDENT
forall (i = 1:N, j = 1:M) a(i,j) = i+j

Composition of sequential blocks

The following program block

38

arball (i = 1:N, j = 1:M)

a(i,j) = i+j
b(i,j) = a(i,])
end arball

is equivalent to the following HPF program segment

'HPF$ INDEPENDENT
forall (i = 1:N, j = 1:M)

a(i,j) = i+j
b(i,j) = a(i,])
end forall

Here the presence of the INDEPENDENT directive means that it is not necessary (as it otherwise would

be) to synchronize threads between the statements of the FORALL construct.

2.6.2.2 Parallel execution using X3H5 Fortran

An arb-model program can be transformed into an equivalent program in the X3H5 notation by
replacing arb and end arb with PARALLEL SECTIONS, SECTION, and END PARALLEL SECTIONS and
replacing arball and end arball with PARALLEL DO and END PARALLEL DO (nested if necessary),

as illustrated in the following examples.

Data-parallel composition of sequential blocks

The following program block

arball (i = 1:N)

a(i) = 1
b(i) = a(i)
end arball

is equivalent to the following program segment using the X3H5 extensions to Fortran
PARALLEL DO i =1, N
a(i) = 1
b(i) = a(di)
END PARALLEL DO

Task-parallel composition of sequential blocks

The following program block

39

arb
seq
call p1(); call p20)
end seq
seq
call p3(); call p4(Q)
end seq
end arb

is equivalent to the following program segment using the X3H5 extensions to Fortran
PARALLEL SECTIONS
SECTION
call p1()
call p2Q0)
SECTION
call p3()
call p4()
END PARALLEL SECTIONS

2.7 Appendix: Program semantics and operational model,

details

This section contains a more detailed treatment of the definitions and theorems of Section 2.1.

2.7.1 Notation

We use the following notation:

e One component of our definition of a program is a set of typed variables V. Such a set
of variables defines a state space S, in which each state s represents a V-tuple, that is, an

assignment of values to variables. For {v1,...,uon} CV and s € S, we write

s[vi/z1, ..., on /T N]

to denote the state formed from s by replacing the value of v; with z;, for ¢ such that 1 <i < N.

40

e For W CV and s € S, we write s | W to denote the W-tuple formed by projecting s onto W.
For W CV, we write V \ W to denote the set difference of V and W.

o We use periods to indicate function application, e.g., f.x denotes f applied to z.

e We express quantification as follows:

“For all” and “there exists”:

Vil,...,iN :p.(il,...,iN) H q.(il,...,iN)

37:1, “e 77:N Zp.(i]_, “e ,ZN) : q.(’il, .. 77'N)
denote the intersection and union, respectively, of predicates q.(i1,-..,iy), where indices
i1,---,%n range over all values such that p.(i1,...,iN)-

Sets and sequences:

{ilr--;iN p(Zl,,ZN) N f(l]_,,’LN)}

denotes the set of all f.(i1,...,in), where indices 41, ...,%ixy range over all values such that
p.(i1,...,in). A similar notation is used for sequences, but using angle brackets ({)) rather

than curly braces.

e We employ the following conventions: s (or s, or s') denotes a program state. P (or P, or
P') denotes a program. C (or C, or C') denotes a computation of a program. v (or v, or
v') denotes a program variable, with a correspondingly subscripted or primed z denoting its

value. ¢ (or g, or ¢') denotes a predicate on states.

We sometimes use the proof format of Dijkstra and Scholten [37], which is perhaps most concisely
described via an example: Suppose we want to show that a formula A is equal to another formula
C by showing that A = B and B = C for some intermediate formula B. We would write this as

follows:

A
= { hint why A =B }
B

{ hint why B=C}
C

41

2.7.2 Definitions

Definition 2.1’ (Program, revisited).
We define a program P as a 6-tuple (V, L, InitL, A, PV, PA) as in Definition 2.1.

O

Remarks about Definition 2.1'.

Program action a = (I,, Oq4, R,) defines a set of state transitions s = s’ as follows:

(s 3 s)=((sl1,),(s L 04)) € R,
A"} (VN O.)) = (s (V\0,)))

If P is a deterministic program, then for every action a in A, R, is a partial function from I,

into O,. The converse is true only if for every state reachable from an initial state (Definition

2.2) at most one action is enabled (Definition 2.3).

For program action a, I, includes all program variables that can affect the outcome of a, and

0, includes all program variables whose values can be changed as a result of a. We do not
require that I, and O, be of minimal size, so it is possible to define two actions corresponding

to the same set of state transitions.

e We can also define a program action based on its set of state transitions. Given a set
X C (S x S) of state transitions, we can define a program action a such that s % s’ exactly

when (s,s') € X, as follows:

I, = {v:veVA@3s,z,z': to_states.(s[v/z]) # to_states.(s[v/z'])) : v}
O, = {v:veVA@ss:(s,8)eX:(sl{v})#(L{v}):v}
R, = {i,o:(iisan I, —tuple) A (0ois an O, — tuple) A

(Vs,s' € S:(sdI.=i)A(s L O, =0) :(s,8") € X)
: (i,0)}

where

to_states.(s) = {s':(s,s') € X :5'}

With this approach, I, and O, are minimal.

42

Definition 2.2’ (Initial states, revisited).

For program P, we can define the set ST of its initial states thus:

ST ={s:s] L=InitL: s}

Definition 2.3’ (Enabled, revisited).
We write enabled.(a, s) to denote that a is enabled in s, as defined in Definition 2.3.

O

Definition 2.4’ (Computation, revisited).

If P=(V,L,InitL, A, PV, PA), a computation of P is a pair
C = (s0,(j: 1 <j < N:(aj,s5)))

in which
e 39 € SI. We call sg the initial state of C and write init.C = sq.

e (j:1<j<N:(aj,s;)) is a sequence of pairs such that

Vi:jedJ:a; €A

A Vj:jEJISj_lﬂSj
We call these pairs the state transitions of C, and the sequence of actions a; the actions of C.

N can be a non-negative integer or oo. In the former case, we say that C is a finite or
terminating computations with length N + 1 and final state sy. In the latter case, we say that

C' is an infinite or nonterminating computation.

We write finite.C' to indicate that C' is finite, and for finite C, we write final.C to indicate its

final state.

43

e If C is infinite, the sequence (j : 1 < j : (a;,s;)) satisfies the following fairness requirement:

If, for some j > 1 and a € A, enabled.(a, s;), then for some j' > j either (a, s;) is in the above

sequence, or —enabled.(a, s;).

Definition 2.5’ (Terminal state, revisited).
We write terminal.(s, P) to denote that s is a terminal state of P, as defined in Definition 2.5.

O

Definition 2.6’ (Maximal computation, revisited).
(Same as Definition 2.6.)

O

Definition 2.7' (Affects, revisited).

We write affects.(v,q) to denote that v affects ¢, and say that affects.(v, q) exactly when there exist

state s and values z and z' of v such that

q-(s[v/z]) # ¢-(s[v/2']) -

We write affects.(v, E) to denote that v affects E, as defined in Definition 2.7.

O

2.7.3 Specifications and program refinement

Definition 2.8’ (Equivalence of computations, revisited).

For P, P;, and V as described in Definition 2.8, we write C} K C5 to denote that computations C}

of P, and C5 of P, are equivalent with respect to V:

((init.C1 L V = init.Cy | V) A (=finite.Cy A —finite.C3))
\%

((init.Cy L'V = init.Cy L V) A (finite.Cy A finite.C2) A (final.Cy LV = final.Cy | V))

44

Remarks about Definition 2.8'.

e Equivalence with respect to a set of variables V' is transitive.

Theorem 2.9’ (Refinement in terms of equivalent computations, revisited).

If (Vi\Li) C (Va\ L2), P. C P> when for every maximal computation Cs of P, there is a maximal

computation C of P; such that C; "~ Cs.

O

Proof of Theorem 2.9'.
(See Theorem 2.9.)

O

2.7.4 Program composition

Definition 2.10' (Composability of programs, revisited).

We say that programs Pi,..., Py, where P; = (V;,L;, InitL;, A;, PV ;, PA;), can be composed
exactly when for every j # k,

v € (V; N'Vi) = v has the same type in V; and Vj,
A ve(V;NV,) = (v€E PV =v € PVy)

A a € (A;NAg) = ais defined in the same way in A; and Ay

45

Remarks about Definition 2.10'.

e If it should be the case that for some j # k, L; N Ly, # {}, we can rename (in P; or P;) any

variables v € L; N Ly without changing the meaning of the modified program.

2.7.4.1 Sequential composition

Definition 2.11' (Sequential composition, revisited).

If programs Pi, ..., Py, with P; = (V;, L;, InitL;, A;, PV ;, PA;), can be composed (Definition 2.10’),
we define their sequential composition (Py;...; Py) = (V, L, InitL, A, PV, PA) thus:

e V=ViU...UuVyUL.

e L=ILU...ULyU{Enp,Eny,...,Enn}, where Enp,Eny,...,Eny are distinct Boolean

variables not otherwise occurring in V.

o InitL is defined by:

(Vj:1<j<N:({UnitL | L; = InitL;) A (InitL | {En;} = (false))))

A(InitL | {Enp} = (true))

e A=AU...UAy U{ar,...,ary}, where

— Ai ={a:a € Aj:ad'}, where for a € Aj, a’ = (Ior,Our, Ror), with

Iar = Ia U {E’n]}
Oy = O,
Ry = {i,0:((i{1I4,0) € R) A (i L {En;} = (true)) : (i,0)}

— ar, = (Ingy» Oury» Rag,)» with

IaTO = {E’np}
OaTO = {E’np, Enl}
Ry, = {is0: (i L {Bnp} = (true))

Ao} {Enp} = (false)) A (0 | {Eni} = (irue))
: (i,0)}

46

— We define ar; in terms of a set of state transitions, as discussed in the remarks following

Definition 2.1'.

For a7; with 1 < j < N — 1, the required set of state transitions is:

{s : (s | {En;} = (true)) A terminal.((s L V}), P;})

1 s = s[Enj/false, Enjyq/true]}

For ar, , the required set of state transitions is:

{s: (s {Enn} = (true)) A terminal.((s | Vn), PN)

1 s = s[Eny/false]}

e PV =PV,U...UPVp.

o PA={a:(3j::a€ PAj):a'}, where o' is as defined above.

2.7.4.2 Parallel composition

Definition 2.12' (Parallel composition, revisited).

If programs Pi, ..., Py, with P; = (V;, L;, InitL;, A;, PV ;, PA;), can be composed (Definition 2.10’),
we define their parallel composition (Py||...]||Pn) = (V, L, InitL, A, PV, PA) thus:

e V=ViU...UVNUL.

e L =LU...ULyU{Enp,Eny,...,Enn}, where Enp,En,,...,Eny are distinct Boolean

variables not otherwise occurring in V.

e InitL is defined by:

(Vj:1<j<N:((InitL | Lj = InitL;) A (InitL | {En;} = (false))))

A(InitL | {Enp} = (true))

o A=AuU...UAyU{ar,...,ar,}, where

47

— Al ={a:a€ Aj:ad'}, where for a € 4j, a' = (Io/, Ou, Rar), with

Ial = Ia U {Enj}
Oy = O,
Ry = {i,0:((i | Ia,0) € Ry) A (i L {En;} = (true)) : (i,0)}

—ar, = (IaTo) OaT()?RaTO)J with

lay, = {Enp}
Ouwry = {Bnp,Em,...,Eny}
Ror, = {i,0: (il {Enp} = (true)) A (ol {Enp} = (false))
AVj:1<j<N:(od{En;} = (true)))
: (i,0)}

— We define ag; in terms of a set of state transitions, as discussed in the remarks following

Definition 2.1'. For a7, the required set of state transitions is:

{s: (s | {En;} = (true)) A terminal.((s L V}), P;})

1 s = s[Enj/false]}

e PV =PV iU...UPVn.

o PA={a:(3j ::a € PAj):a'}, where a' is as defined above.

2.8 arb-compatibility and arb composition, details

This section contains a more detailed treatment of the definitions and theorems of Section 2.2.
2.8.1 Definition of arb-compatibility

Definition 2.13' (Commutativity of actions, revisited).

Actions a and b of program P are said to commute exactly when:

Vs1,82 : 81 LN s2 : (enabled.(a,s1) = enabled.(a, s2))

48
A Vsi,89 181 — s9: (enabled.(b, s1) = enabled.(b, s2))
A Vs; : enabled.(a, s1) A enabled.(b,s1) :
((Vs2,83 : (51> 53 A 52 2 s3) : (385 = (81 5 sy A sh = 53)))

A (V82,851 (51— 82 A sz -3 s3) 1 (Tsh it (513 sh Ash D s3))))

Definition 2.14' (arb-compatible, revisited).

Programs Pi, ..., Py, where P; = (Vj, L;, InitL;, A;, PV ;, PA;), are arb-compatible exactly when
they can be composed (Definition 2.10") and, for any two actions a; € A; and ay € Ay, with j # k,

a; and a; commute.

O

2.8.2 Equivalence of sequential and parallel composition for arb-compatible

components

For the sake of completeness, some material from Section 2.2.2 is repeated here.

Theorem 2.15' (Parallel ~ sequential for arb-compatible programs, revisited).

If P,..., Py are arb-compatible, where P; = (V;, L;, InitL;, A;, PV j, PA;), then

(Pi|...[|IPx) ~ (Pr;...; Px) .

Proof of Theorem 2.15'.

We write Pp = (Pi]|...||Pn) and Ps = (Py;...; Py). From Definition 2.11' and Definition 2.12’,
(Ve =Vs)A (Lp = Lg) A (InitLp = InitLs) A (PVp = PVg) A (PAp = PAg) ,

so we write Pp = (V, L, InitL, Ap, PV,PA) and Ps = (V, L, InitL, As, PV, PA). We proceed as

follows:

49

e We first show (Lemma 2.17') that for every maximal computation Cs of Pg there is a maximal

computation Cp of Pp with Cs A Cp. From Theorem 2.9', this establishes that Pp C Pg.

e We then show (Lemma 2.17') the converse: that for every maximal computation Cg of Ps there

is a maximal computation Cg of Pg with Cg R Cs. From Theorem 2.9', this establishes

that Ps C Pg.

e We then conclude that Pp ~ Pg, as desired.

We begin by proving two additional lemmas:

Lemma 2.16' (Reordering of computations, revisited).
(Same as Lemma 2.16.)

O

Lemma 2.28.

For Pp defined as in Theorem 2.15', if a; € (A} U {A7;}) and ar € (A} U {Ar,}), with j # k, a;

and a; commute.

O

Proof of Lemma 2.28.

We define a set of variables V! =V \ {Enp, Eni,...,Enyn}, and we consider the various cases:
. a;- € A;- and aj, € Aj,. Then there are corresponding a; € A; and a;, € Ay, and:
First we show that if s; i s2, enabled.(a},, s1) = enabled.(a},, s2). From the definition of a},
enabled.(a},, s1) = (enabled.(ay,s1 4 V') A (51 | {Eni} = (true)) .
Since aj and a; commute,
enabled.(ar,s1 L V') = enabled.(ay,s2 | V') .

So since aj does not change the value of Eng,

enabled.(a},,s1) = enabled.(a), s2) .

50

Now we show that

enabled.(a}, s1) A enabled(aj,, s1) A (s1 4 $2) A (52 25 s3)

= (3sh (515 L) A (sh 3 s3)) .
Clearly

enabled.(aj,s1 L V') A enabled(ag,s1 4 V')
A(s1 4 V") 3 (s2 L V) A ((s2 4 V') B (s3 L V7))

Also, (s1 | {Enj, Ent}) = (true, true), and neither aj nor aj, changes the value of any En,, or

E’np.

Since a; and aj commute, there is a state s such that
(1 LV B (s LVDA((sLV) 3 (s34 V))
If we define s} such that
(s34 V) = (s V) A(sy L (VAV)) = (s1 L (V\V))
then s} is the required intermediate stage.

By symmetry, the “vice versa” part of the definition is true: ay does not enable or disable a;,

and so forth.

a; € A and aj, = ar,. Then there is corresponding a; € A;, and:
It is clear from the definitions that if s; i 89, enabled.(a;-, s1) = enabled.(a}, 82).
If 54 ﬁ 82, from the definition of af, (s1 | V') X (s5 1 V'). From the definition of ar,,
enabled.(ar, ,51) = ((s1 { {Enk}) A terminal.((s1 4 Vi), Pr) -
a; does not alter the value of Eny, and since a; commutes with all a;, € Ay,
terminal.((s1 4 Vi), Px) = terminal.((s2 4 Vi), Px) -

So

enabled.(ar, ,s1) = enabled.(ar,, s2) -

51

Now we show that

enabled.(a);, 51) A enabled(ag, , s1) A (s1 4 $2) A (82 =¥ s3)

arT,

= (3sh (51 = sh) A (sh = s3)) .

sh = s1[Eny[false] is the desired intermediate stage.

Finally we show that

a

enabled.(a};, s1) A enabled(ar, , s1) A (51 = s2) A (82 4 s3))

= (Bsh = (51 2 sb) A (sh = 83)) .

sh = s3[Eny [true] is the desired intermediate stage.

1 !
® a; = ary and aj, = ar,-

Clearly these two actions commute.

Lemma 2.17' (Sequential refines parallel, revisited).

For Pp and Ps defined as in Theorem 2.15'; if C's is a maximal computation of Pg, there is a

maximal computation C'p of Pp with Cg A Cp.

O

Proof of Lemma 2.17'.

Let Cs be a maximal computation of Ps. We want to produce a computation Cp of Pp such that
Cp A C's. We first observe that the actions of Ps and the actions of Pp have identical names and
are in fact identical, with the exception of the actions {ar,,...,ar, }. We distinguish these actions

as, for example, a7, py and a(g,,s5)- We construct Cp as follows:
e nit.Cp = init.Cs. Since InitLp = InitLg, init.Cp € SIp.

e The first transition in Cg is (a(TO, 5)s s1). We define an analogous transition in Cp:

(a(y,p), s1[Enz/true, ..., Eny/true])

52

e The rest of Cs is a concatenation of sequences of the following form:

(n:mj <n < Mj: (an,sn))

If Cs is finite, there is one such sequence for each j such that
finite. If Cs is infinite, there is one such sequence for each j

N' < N, and M; is finite for j < N’ and infinite for j = N'.

Observe that:

(M; < 00) = (am; = a(Tj,S)))

> > > >
~~ ~~ /&\ ~— ~—~
S
g 3
A
S
A
=
|
—
S
3
m
s

1< j <N, and every M; is
such that 1 < j < N', with

(M; < 00) = terminal.((s(m;)—1 4 Vj), Pj))

(If M; = oo, we interpret M; — 1 as oo as well.)

We can map this sequence to a sequence
(n:m; <n < Mj:(ay,sp))
of transitions of Pp as follows:

(Vn:mj <n < Mj: (s, = sp[Enji1/true,
(Vn:m; <n<M;—1:(a, =ay)

A
A ((Mj < o0) = (ay, = a(z;,p)))
We observe that:

(s’(mj)_1 1V; € SI;)

... Enn/true])

A ((Mj < 00) = terminal.((s(pr,)—1 + V5),)

Observe also that if M; < oo and j < N,

SM; = Smj1)—1

53

so by construction

!

!
SM; = Smgin-1 -

If Cg is finite, concatenating these sequences (n : m; < n < M; : (a),,s),)) gives us a finite

computation Cp of Pp with init.Cp = init.Cs. Further,

final.Cs = spry
N Smy = Sy

A terminal (s, , P) .

So C'p is maximal, and final.Cp = final.Cg, the desired result.

If Cs is infinite, concatenating the sequences (n : m; < n < M; : (al,,s,)) almost gives us an

n»“n
infinite computation of Pp, except that this sequence of transitions may violate the fairness
requirement that is part of our definition of computation: Since My = oo, for j > N', no
action from A; can ever execute, even if one is enabled. We can, however, produce from our

concatenation of sequences a (fair) computation of Pp: We observe that each sequence
(n:mj <n<Mj: (ap,,sy,))

corresponds to a computation of P; with initial state init.Cs | V;. For each j > N', define a
similar sequence corresponding to some (arbitrarily-chosen) maximal computation of P; with
initial state init.C's | Vj, followed (if finite) by a transition corresponding to Ar;. Each
sequence

(n:mj <n< Mj:(al,s))

n»*n

corresponds to a sequence of actions in (A} U {Ar; }). We now have, for each j, a sequence of

actions
A(4,1), A(5,2)5 -+ »

where each a(;) is in (45U{A7; }). Consider the sequence a of actions produced by alternating

elements from these sequences:

a = 0a(1,1); A(2,1)5 - - - > F(N,1)5 A(1,2)s A(2,2) 5 - - - 5 A(N,2)5 - - -

(Observe that if n > Mj, there is no a(; »); in this case, we simply continue with the next
element in the above sequence.) We observe that, from Lemma 2.28, actions in (4} U {Ar,})
commute with actions in (A} U {Ar}), for j # k. In particular, actions in (A} U {Ar,})

neither enable nor disable actions in (A}, U {Ar, }). Thus, we can generate from « a sequence

54
of transitions of Pp from initial state init.Cg:
— Let sg = init.Cg, and

— for n > 1, choose some s,, such that s, ; LY Spn, where b; is the i-th action in a.

Since this sequence of transitions clearly satisfies the fairness requirement, it together with its
initial state forms an infinite computation Cp of Pp with the same initial state as Cs, the

desired result.

So we have produced a maximal computation C'p of Pp such that Cp RS Cs.

O

Lemma 2.18' (Parallel refines sequential, revisited).

For Ps and Pp defined as in Theorem 2.15', if Cp is a maximal computation of Pp, there is a

maximal computation Cs of Ps with Cp "~ Cj.

O

Proof of Lemma 2.18'.

We first construct from Cp an equivalent sequence of transitions of Pp with the property that for

any pair of transitions

((aj7 S"j)7 (ak7 S"k))

(not necessarily consecutive) of Cp, where
(aj € (A5 U{AT;}) A (ar € (A, U{AT,})

we have

(nj <mg)=(j <k) .

We will refer to such a pair of transitions as being in order. We will then map this sequence of

transitions to a computation of C’s.

Constructing the sequence of transitions. We construct the sequence of transitions in a
manner analogous to a well-known nondeterministic sorting algorithm (as discussed in, e.g., [22])
in which an array is sorted by repeatedly choosing one out-of-sequence pair and exchanging its

elements.

95

We first consider finite computations. Suppose Cp is a finite computation of P. Let M.(Cp) be
the number of pairs of state transitions of Cp that are not in order. For m such that 1 < m < M.(Cp),

define C{™ thus:
o C =Cp.

e For m such that 1 < m < M.(Cp), if M.(C¥" V) =0, define CI™ = iV,

IftM .(Cl(gmfl)) > 0, there is at least one pair of consecutive state transitions

(@5, 5n), (ak; 5nt1))
in ™" such that

(a; € (A5 U{A; }) A (ax € (A, U{AR) A (G > k) .

From Lemma 2.28, a; and aj commute, and from Lemma 2.16', we can construct Cl(,m) with
the same initial state as C}()m&) and the same sequence of state transitions, except that we

replace the pair

((@j, 8n), (ak; snt1))

with the pair

((ak> S;z)a (aja 5n+l)) :
We observe that for m such that 1 <m < M.(Cp),

C}()m) (VAD) C}()mfl)

since the two computations have the same final state, and from the transitivity of this equivalence
relation,

C}(Jm) VAP o

Further, either M.(C{™) = 0, or M.(C™) < M.(C"™V) = 1, so M.(CI)) = 0. We have thus
produced a computation CI(,M) of Pp such that C}(DM) Y Cp and every pair of transitions in CI(,M)
is in order. Observe also that since C'p is maximal, so is C’I(,M).

Now consider the case of infinite Cp. Because of fairness considerations, we may not be able to
produce from Cp an infinite computation Cp of Pp with the property that every pair of transitions
in Cp is in order. However, we can produce a sequence of transitions of Pp from the initial state of
Cp with this property, which is all we need. We proceed as follows: Since Cp is infinite, there is at

least one m such that 1 < m < N and Cp contains infinitely many actions from A/ . Choose the

56

smallest such m. For j such that 1 < j <m — 1, C'p contains a finite sequence

A(5,1)> 3(5,2)> - - - » A(4,my)

of actions from A;.. Cp also contains an infinite sequence

A(m,1)> A(m,2) - - -

of actions from A’ . We can concatenate these sequences into a single infinite sequence
m

QO =0a1,1)s-+501,m1) A2,1)5 -+ -5 A(2,n2) 1+ - A(m—1,1)5 + -+ s A(m—1,nm—1) > A(m,1)) A(m,2)5 « - -

Because a; and a commute whenever a; € (4; U{ar;}) and ax € (4} U {ar,}) and j # k, (and
thus actions from (A U {ar;}) do not change the enabled status of actions from (4} U{ar,}) where

j # k), we can define a sequence 7 of transitions of Pp thus:
e Let sg = init.Cp, and
e for n > 1, choose some s,, such that s, 1 b Spn, where b; is the i-th action in «.

This gives us an infinite sequence 7 of transitions of Pp with the desired property.

Observe that for j such that 1 < j < m — 1, the sequence a;1),a(;2);---,a(j,n;) corresponds
to a maximal terminating computation of P;: Given that (a(;n;),s) appears in Cp, we must have
terminal.((s | V;), P;), since if any action from A; is enabled in s | Vj}, the corresponding action
of A’ is enabled in s, and by the fairness requirement and the arb-compatibility restrictions must
eventually appear in Cp, contrary to hypothesis. Further, we observe that for the corresponding
transition (a(j,n;),s') in 7, we must have terminal.((s' | V}), P;), again from the arb-compatibility
restriction that actions from one component do not enable or disable actions from another compo-

nent.

Mapping the sequence to a computation of Ps. Having constructed a sequence 7 of transi-
tions of Pp starting from init.C'p with the property that every pair of transitions in the sequence is
in order, we can now construct a computation Cs of Pg, with Cs A Cp, as follows. (The proof
of this claim is very similar to the proof of Lemma 2.17".)

We first observe that the actions of Pp and the actions of Pg have identical names and are in
fact identical, with the exception of the actions {ar,,...,ary }. We distinguish these actions as, for

example, a(z; p) and a(z,,s)-

e init.Cs = init.Cp. Since InitLs = InitLp, init.Cs € Slg.

57

e The first transition in 7 is (a(r,,p), s1). We define an analogous transition in Cls:
(a(my,s), s1[Ena/false, . .., Eny /false])
e The rest of 7 is a concatenation of sequences of the following form:
(n:mj; <n < M;: (an, sn))

If Cp is finite, there is one such sequence for each j such that 1 < j < N, and every M; is
finite. If C'p is infinite, there is one such sequence for each j such that 1 < j < N', with

N' < N, and M; is finite for j < N’ and infinite for j = N'.
Observe that:
8(m;) -1+ Vi € SIj)

Vn:m; <n<M;—1:Vk:j<k<N:(sp! Eng) = (true)))

(
(
(Vn:m; <n < Mj—1:a,€ A))
(M < 00) = (am; = a(zy,p)))

(

> > > >

(M; < 00) = terminal.((s(ar;)—1 4 Vj), Pj))

(If M; = oo, we interpret M; — 1 as oo as well.)

The truth of the last conjunct (terminal.((s(ar;)-1 + Vj),P;)) is less obvious than is the
case for the analogous conjunct in the proof of Lemma 2.17', but we reason as follows: If
—terminal.((s(x;)-1 4 V), Pj), then in state s(p;;)—; there is an enabled action from A. If
7 is finite, 7 corresponds to a maximal computation of Pp (by construction above), and so
this action from A} must occur later in 7, since no action by another A} can disable it (by
arb-compatibility). This is impossible, since all pairs of transitions of 7 are in order. If 7 is
infinite but M; < oo, by construction of 7 we have the desired result, since j must be such
that Cp contains only finitely many actions from A’, the last of which produces a terminal

state of P;, as discussed earlier.

Continuing, we can map this sequence to a sequence

(n:m; <n < Mj:(ay,,s,))

58

of transitions of Ps as follows:

(Vn:m; <n < Mj: (s, = sp[Enjt1/false,... Eny/false])
A (Yn:m; <n<M;—1:(a, =a,))
A

(Mj < o0) = (am; = a(Tj,S)))
We observe that:

(Stmy)—1 4 V5 € SI;)

A ((Mj < 00) = terminal.((s(ar,)—1 + V5), Pj))
Observe also that if M; < oo and j < N,

SM; = Sm(j1q) -1

so by construction

!

!
SM; = Smipn -1 -
So concatenating these sequences (n : m; < n < M; : (al,, s,)) gives us a sequence of transi-
tions of Pg with init.C's = init.Cp.

If C'p is finite, so is this sequence of transitions, so it forms a finite computation Cp, and:

final.Cp = sy
o
N SMy = Sumy

A terminal.(sy;, , Ps)

So Cg is maximal, and final.Cs = final.Cp.

If Cp is infinite, so is this sequence of transitions, and it (unlike 7) meets the fairness require-
ment, since in Pg actions from P; become enabled only after P;_; terminates. So this sequence
of transitions forms an infinite computation of Ps.

So we have produced a computation C's of Ps such that Cg R Ch.

O

59

2.8.3 Simpler sufficient conditions for arb-compatibility

Definition 2.22' (Variables read by P, revisited).

For program P = (V, L, InitL, A, PV, PA), we define the set of variables read by P thus:

VR = UaEAIa

Definition 2.23' (Variables written by P, revisited).

For program P = (V, L, InitL, A, PV, PA), we define the set of variables written by P thus:

VW = UaEAOa

Definition 2.24' (Programs that share only read-only variables, revisited).
If programs P,..., Py, where P; = (Vj, L;, InitL;, A;, PV ;, PA;), can be composed (Definition
2.10"), and we have that

Vik:j#k: (VIW;n(VR,U VW) ={}),

then we say that P,..., Py share only read-only variables.

O

Theorem 2.25' (arb-compatibility and shared variables, revisited).

If programs Py, ..., Py share only read-only variables (Definition 2.24'), then Py,..., Py are arb-

compatible.

O

60

Proof of Theorem 2.25'.

Given programs P, ..., Py that satisfy the condition, we want to show that for any a; € A; and

ay, € Ay, with j # k, a; and a3 commute.

First we consider whether a; can affect the enabled status of aj. If s; X sy, from the restrictions

on shared variables,

(824 Lay,) = (511 Iay,) -

Since

affects.(v, enabled.(ax, s)) = (v € I,,)

clearly

enabled.(ay, s1) = enabled.(ay, s2) -

By symmetry, a, cannot affect the enabled status of a;.

Now consider the situation in which we have
enabled.(a;,s1) N enabled.(ag,s1) A (s1 Ko s)A(s2 B s3) .

We want state s) such that

Define s}, thus:

Vo€ O, i (sh L {0}) = (53 4 {v})
A Voo O, (sh L {0}) = (51 4 {v})

51 28 5! exactly when

(((81 ~L Iak)a (SI2 J« Oak)) € Rak) (21)
A (834 (V\Og,)) = (51 L (V\ Oa))) (2:2)

(2.2) holds by construction of s}. (2.1) holds because:

((s1 4 Ia,,) = (52 1 La,))
A (24 Oay) = (534 Oar))
A (((52 { Iak)7 (53 { Oa,k)) € Rak)

61

sh, 2 s3 exactly when

(((sl2 J, Iaj)? (33 *L Oaj)) € Raj) (23)
A (s34 (V\Oo))) = (55 4 (V\ Oq,))) (2.4)
(2.3) holds because:
((sh 4 Iay) = (51 4 1))

((s3 4 Oq;) = (524 Og;))

A
A (((s1 4 Iaj)a (s24 O(Lj)) € Ra,-))

(2.4) holds by construction of s} and because

Vo : (v € Ou) A (v E ;) : (534 {v}) = (514 {v}))

By symmetry, a similar construction applies to computations in which ay, is performed first.

O

2.9 Appendix: Dijkstra’s guarded-command language and
our model, details

In this section we sketch definitions in our model for some of the commands and constructors of

Dijkstra’s guarded-command language [35, 37].
2.9.1 Simple commands

Definition 2.29 (Skip).

We define program skip = (V, L, InitL, A, PV, PA) as follows:
e V=1L
o L = {Engp}, where Engp is a Boolean variable.
e InitL = (true).

o A= {a}, where

Ia = {Enskip}

62
Oa = {Enskip}
R, = {((true), (false))}

o PV ={}.

o PA=1{}.

Definition 2.30 (Assignment).

We define program P = (V, L, InitL, A, PV, PA) for (y := E) as follows:
o V=A{vi,...,on}U{y} UL, where {v1,...,un} = {v: affects.(v, E) : v}.
e L = {Enp}, where Enp is a Boolean variable not otherwise occurring in V.
o InitL = (true).

o A= {a}, where

I, = {Enp}U{vi,...,on}
011 = {EnPJy}
R, = {z1,...,zNn = ((true,z1,...,2N), (false, E.(z1,...,2N))}
and z1,...,zN is an assignment of values to the variables in vy,...,uy.
o PV ={}.
e PA=1{}.

Definition 2.31 (Abort).

We define program abort = (V, L, InitL, A, PV, PA) as follows:
e V=1L
o L = {Engport}, where Engport is a Boolean variable.

o InitL = (true).

63

o A = {a}, where

Ia = {Enabort}
Os = {}
R, {(true), ()}

o PV ={}.

o PA=1{}.

2.9.2 Alternative composition (IF)

First we need an additional preliminary definition:

Definition 2.32 (Composability of guards with programs).

We say that guards b1, ...,bn, where b; is a Boolean expression with variables W;, can be composed
with programs P, ..., Py, where P; = (V;,L;, InitL;, Aj, PV j, PA;), exactly when Py, ..., Py can
be composed (Definition 2.10") and for all j:

v € W; = (3k :: v € V; Av has the same type in W; and V4,) .

Definition 2.33 (Alternative composition).

Our definition of alternative composition is analogous to the definition of sequential composition in
Definition 2.11". Given programs P,..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), and Boolean
expressions by,...,by such that Py,..., Py can be composed (Definition 2.10') and by,...,by can

be composed with Pi,..., Py (Definition 2.32), we define program P = (V, L, InitL, A, PV, PA) for
if []J b]' — Pj fi

as follows:

e V=ViU...UVNyUL.

64

e L =LiU...ULNU{Enp, Engport, En1,...,Enn}, where Enp, Engport, Ena,...,Enn are

distinct Boolean variables not otherwise occurring in V.

e InitL is defined by:

(Vj:1<j<N:((InitL | L; = InitL;) A (InitL | {En;} = (false))))

A (InitL] {Enp, Engport } = (true, false))

e A consists of the following actions:

— An action agpor¢ for the case in which initially none of the guards is true. s Gabgrt o exactly

when

((s L {Enp} = (true)) A (Vj :: =bj.8) A (s' = s[Enp/false, Engport [true]))
Vv

((s 4 {Enaore} = (true)) A (s' ='s)) .

— For each j such that 1 < j < N, an action astas; for the case in which guard b; is initially

Qstart ;
true. s —° s' exactly when

(s L {Enp} = (true)) Abj.s A (s L V; € SI;) A (s' = s[Enp/false, Enj/true])

— For each j such that 1 < j < N, an action aenq; that terminates the IF' composition after

the selected P; (started by an as¢,r; action) completes. s ai;j s' exactly when
(s L {En;} = (true)) A terminal.((s 1 V;), P;) A (s' = s[En;/false])

— For each action a; in A;, a corresponding action a’;, defined as for sequential composition:

a’,
s 3 s’ exactly when

(s 4 {Enj} = (true))
A(s L V) 3 (S LVD) A (8" L (VAT))) = (s L (V\T)))
o PV =PV U...UPVy.

e PA contains exactly those actions a' derived (as described above) from the actions a of

PA; U...UPAy.

65
2.9.3 Repetition (DO)

Definition 2.34 (Repetition).

Our definition of repetition is analogous to the definition of sequential composition in Definition
2.11' and the definition of alternative composition in Definition 2.33. Given program Py.qy =
(Vbodys Lbody, InitLyody, Abody) and Boolean expression b such that b can be composed with Ppoqy

(Definition 2.32), we define program P = (V, L, InitL, A, PV, PA) for
dob - Pod

as follows:
o V= Vbody U L.

o L = Lyoay U{Enp, Enyody}, where Enp, Enyoqy are distinct Boolean variables not otherwise

occurring in V.

o InitL is defined by:

(InitL | Lpogy = InitLyogy) A (InitL | {Enp, Enpoqy} = (true, false))

e A consists of the following actions:

— An action aegi to exit the loop. s eyt ot exactly when
(s { {Enp} = (true)) A —b.s A (s' = s[Enp/false])
— An action ag+ to start a loop iteration. s Tatgrt of exactly when

(s L {Enp} = (true)) ANb.s A (s' = s[Enp/false, Enyoqy/true]) .

Qeyele 4
S

— An action a.yc. to return to the beginning of the loop and test the guard again. s =

exactly when

(8 4 {Enboay} = (true)) A terminal.((S | Viody)s Poody)

A(s" = s[Enpoay [false, Enp /[true, Lyoqy/InitLyody))

(In the equality for s’, “Loqy/InitLyoq,” indicates that the values of all variables in Logy

are to be replaced by their values in InitLy,qy-)

66

. . . . , .
— For each action apoqy in Apody, & corresponding action Aoy defined as for sequential

7
" o,
composition: s —' s’ exactly when

(s L {Enpoay } = (true))

A(5 4 Vioay) 3" (5" 4 Vaoay)) A (8" 4 (V\ Vaoay)) = (5 4 (V' \ Vboay)))

e PV = PVbody-

e PA contains exactly those actions o' derived (as described above) from the actions a of PAp,qy.

67

Chapter 3

A collection of useful

transformations

In the preceding chapter we described the first step of our programming methodology: expressing the
desired computation in what we call the arb model (sequential constructs plus arb composition).
Because arb composition can be implemented as either sequential or parallel composition (with
equivalent results), programs in the arb model can be executed as parallel programs. However, they
may not make effective use of typical parallel architectures, so our methodology also addresses the
question of how to transform them into programs that make better use of parallel architectures.
Chapter 4 and Chapter 5 describe the eventual goal of such transformations — programs suitable
for execution on a shared-memory-model architecture with barrier synchronization (the par model
of Chapter 4) or a distributed-memory-model architecture with message-passing (the subset par
model of Chapter 5). This chapter presents a collection of transformations useful in the step-by-
step conversion of an initial arb-model program into a program in one of these models. These

transformations have the following useful characteristics:

e They can be viewed as semantics-preserving transformations for sequential programs, so ar-
guments for their correctness can be given based on the techniques of sequential stepwise

refinement.

e They produce programs that can be executed sequentially, so their results can be verified and

debugged using sequential tools and techniques.
For each transformation or class of transformations presented in this chapter, we present:
e The transformation.

e A discussion of its utility.

68

e An argument for its correctness (i.e., an argument that it produces a program that refines the

original program).
e An example or examples of its use.

We also sketch without proof some additional transformations. This collection is not intended as an
exhaustive list of all possible useful transformations, but rather as a representative collection that
is also sufficient to address a range of typical application programs.

It is important also to note the role of archetypes in the transformation process: An archetype
can provide, for the class of programs whose common features it abstracts, not only a pattern for
the arb-model program that is the first step in our program-development methodology, but also
a strategy for selecting and applying appropriate transformations and a pattern for the eventual
shared-memory or distributed-memory program. The archetype can then guide the transformation
process toward a result that is known to be efficient, with the process (applying a sequence of

semantics-preserving transformations) guaranteeing the correctness of the result.

3.1 Removal of superfluous synchronization

3.1.1 Motivation

If there is significant cost associated with executing a parallel composition (because of thread cre-
ation), then program efficiency can clearly be improved by combining a sequence of arb compositions
of N elements into a single arb composition of N elements, as shown in the following theorem, when

it is possible to do so without changing the meaning of the program.

3.1.2 Definition and argument for correctness

Theorem 3.1 (Removal of superfluous synchronization).

If P,..., Py are arb-compatible, and @)1, ...,Q N are arb-compatible, and the sequential compo-

sitions seq(P1,Q1), ---, seq(Pn,QN) are arb-compatible, then

seq(arb(Py,..., Py),arb(Q1,...,QnN))

arb(seq(P1,Q1),...,seq(Pxn,Qn))

69

Proof of Theorem 3.1.

First we observe that for j # k, seq(P;, Q),) and seq(Py, Q) are arb-compatible (from the hypothe-
sis and the definition of arb-compatibility, Definition 2.14), and hence P; and @}, are arb-compatible
(from the definitions of sequential composition and arb-compatibility, Definition 2.11 and Defini-
tion 2.14). From the definition and commutativity of arb composition (Theorem 2.15 and Theorem

2.20), then, (Pj; Qk) ~ (Qk; P;). We can then calculate thus:

seq(arb(Py,...,Py),arb(Q1,...,QnN))

~ { Theorem 2.15 and associativity of sequential composition }
Py s PN;Qu- - QN
~ { as noted above }
Pij.. i Pno1;Q1; PN Q2;. -5 QN
~ { repeating the above step repeatedly }
Pi;Q1;.. 5 PN;Qn
~ { associativity of sequential composition, Theorem 2.15, and hypothesis }

arb(seq(P1, Q1),seq(Pn, Qn))

3.1.3 Example

Let program P be the following program:

integer a(N), b(N), c(N)
arball (i =1 : N)
b(i) = a(i)
end arball
arball (i =1 : N)
c(i) = b(1)
end arball

Then P is equivalent to the following program P’:

integer a(N), b(N), c(N)
arball (i =1 : N)

b(i) = a(i)

c(i) = b(i)
end arball

70
3.2 Change of granularity

3.2.1 Motivation

If (1) the number of elements in an arb composition is large compared to the number of processors
available for execution, and (2) the cost of creating a separate thread for each element of the
composition is relatively high, then we can improve the efficiency of the program by reducing the

number of threads required, that is, by changing the granularity of the program.

3.2.2 Definition and argument for correctness

We can change the granularity of an arb-model program by transforming an arb composition of
N elements into a combination of arb composition (of fewer than N elements) and sequential

composition, as described in the following theorem.

Theorem 3.2 (Change of granularity).

If P,,..., Py are arb-compatible, and we have integers j, jo, - .., ja such that (1 < ji) A (1 < jo2)
A...A(ju < N), then

aI‘b(P]_, - ,PN)

arb(
Seq(Pla" '5Pj1)a
Seq(Pj1+17 .. '7Pj2)7

Seq(PjM+17"'7PN)

Proof of Theorem 3.2.

This follows immediately from the associativity of arb composition (Theorem 2.19) and the equiv-

alence of sequential and arb composition (Theorem 2.15).

O

71
3.2.3 Example

Continuing the example of Section 3.1, let program P be the following program:

integer a(N), b(N), c(W)

arball (i =1 : N)

b(i) = a(i)
c(i) = b(i)
end arball

Then P is equivalent to the following program P':

integer a(N), b(N), c(N)

arb
doi=1, N/2
b(i) = a(i)
c(i) = b(i)
end do
doi=N/2+1,N
b(i) = a(i)
c(i) = b(d)
end do
end arb

If only two processors are available, program P’ is likely to be more efficient than P, since P implies

the creation of N threads, while P’ implies the creation of only 2 threads.

3.3 Data distribution and duplication

3.3.1 Motivation

In order to transform a program in the arb model into a program suitable for execution on a
distributed-memory architecture, we must partition its variables into distinct groups, each corre-
sponding to an address space (and hence to a process). Such partitioning is essential to producing
a program suitable for execution on a distributed-memory architecture, but it may also improve
efficiency on some shared-memory architectures, for example those in which each processor has a
separate cache, since programs with a high degree of data locality may make more effective use of
such caches. Chapter 5 describes the characteristics such a partitioning should have in order to per-

mit execution on a distributed-memory architecture; in this chapter we discuss only the mechanics

72

of the partitioning, that is, transformations that effect partitioning while preserving program cor-
rectness. These transformations fall into two categories: data distribution, in which variables of the
original program are mapped one-to-one onto variables of the transformed program; and data du-
plication, in which the map is one-to-many, that is, in which some variables of the original program

are duplicated in the transformed program.

3.3.2 Data distribution: definition and argument for correctness

The transformations required to effect data distribution are in essence renamings of program vari-
ables, in which variables of the original program are mapped one-to-one to variables of the trans-
formed program. The most typical use of data distribution is in partitioning non-atomic data objects
such as arrays: Each array is divided into local sections, one for each process, and a one-to-one map
is defined between the elements of the original array and the elements of the (disjoint) union of the
local sections. Figure 3.1 shows an example of such partitioning. The shaded element illustrates the
one-to-one map between the original array and its partitioning: It is mapped from position (3,6)
of the original array to position (1,2) in array section (2,2). That such a renaming operation does
not change the meaning of the program is clear, although if elements of the array are referenced via
index variables, some care must be taken to ensure that they (the index variables) are transformed

in a way consistent with the renaming/mapping.

HH A
w - patition H{H HEH
HH HH
HH HH

Figure 3.1: Partitioning a 16 by 16 array into 8 array sections.

3.3.3 Data distribution: example

Continuing the example of Section 3.1 and Section 3.2, let program P be the following program:

integer a(N), b(N), c(N)
arb
do i =1, N/2
b(i) = a(i)
c(i) = b(1)

end do

73

doi=N/2+1, N

b(i) = a(i)
c(i) = b(i)
end do
end arb

We can effectively partition arrays a, b, and c into two distinct groups of data elements by mapping
each 1-dimensional array of size N onto a 2-dimensional array of size N/2 by 2, where each column
of the 2-dimensional array represents a local section of the partitioned array. Applying this map to

program P produces the following equivalent program P’:

integer a(N/2, 2), b(N/2, 2), c(N/2, 2)

arb
doi=1, N/2
b(i, 1) = a(i, 1)
c(i, 1) = b(i, 1)
end do
doi=1, N/2
b(i, 2) = a(i, 2)
c(i, 2) = b(i, 2)
end do
end arb

3.3.4 Data duplication: definition and argument for correctness

The transformations involved in data duplication are less obviously semantics-preserving than those
involved in data distribution. The goal of such a transformation is to replace a single variable
with multiple copies, such that “copy consistency is maintained when it matters.” We use the term
(re-)establishing copy consistency to refer to (re-)establishing the property that all of the copies have
the same value (and that their value is the same as that of the original variable at an analogous
point in the computation). In the transformed program, all copies have the same initial value as the
initial value of the original variable (thereby establishing copy consistency), and any reference to a
copy that changes its value is followed by program actions to assign the new value to the other copies
as well (thereby re-establishing copy consistency when it is violated). Whenever copy consistency
holds, a read reference to the original variable can be transformed into a read reference to any one

of the copies without changing the meaning of the program.

74

3.3.4.1 Phase 1: duplicating the variable

We can accomplish such a transformation using the techniques of data refinement, as described in
[59]. We begin with the following data-refinement transformation: Given program P with local

variables L, duplicating variable w in L means producing a program P’ with variables
L'=L\{w}u{w®,. . . v}

(where N is the number of copies desired and w®, ..., w®™) are the copies of w), such that P C P'.
It is simplest to think in terms of renaming w to w() and then introducing variables w'?, ..., w®™);
it is then clear what it means for P’ (with variable w(!)) to meet the same specification as P (with
variable w).

Using the techniques of data refinement, we can produce such a program P’ by defining the
abstraction invariant

Vji:2<j<N:w® =W
and transforming P as follows:

e Assign the same initial value to each copy w') in InitL’ that was assigned to w in InitL, and

replace any assignment w := E in P with the multiple assignment

w® . w®™ = EW W)

where E*%) = E[w/w'¥)] (j is arbitrary and can be different for different values of k). Observe
that multiple assignment can be implemented as a sequence of assignments, possibly using

temporary variables if w affects E.
e Replace any other reference to w in P with a reference to w'/), where j is arbitrary.

The first replacement rule ensures that the abstraction invariant holds after each command; the
second rule makes use of the invariant. In our informal terminology, the abstraction invariant states
that copy consistency holds, and the two replacement rules respectively (re-)establish and exploit
copy consistency.

Let P’ be the result of applying these refinement rules to P. Then P C P’. We do not give a
detailed proof, but such a proof could be produced using the rules of data refinement (as given in

[59]) and structural induction on P.

3.3.4.2 Phase 2: further refinements

For our purposes, however, P’ as just defined may not be quite what we want, since in some situations

it would be advantageous to postpone re-establishing copy consistency (e.g., it might make it possible

75

to apply Theorem 3.1, or if there are several duplicated variables, it might be advantageous to defer
re-establishing copy consistency until all have been assigned new values), if we can do so without

losing the property that P C P’. We observe, then, that

(WD, W™ = BV, By, Q

M

w® = E® . Q; (w®,... wh=D @kt) = ®) (k)

as long as for all j # k, w') is not among the variables read or written by Q. The argument for the

correctness of this claim is similar to that used to prove Theorem 2.25 in Section 2.2.5.

3.3.4.3 Application to arb-model programs
We can thus give the following replacement rules for duplicating variable w in an arb-model program:

¢ Replace w := E with

arb(w®® = Elw/w®], ..., w™) = Elw/w™)) .

e If w is not written by any of Pi,..., Py, replace arb(Py, ..., Py) with

arb(P, [w/w™M],..., Px[w/w™)]) .

e If w is written by P, but neither read nor written by any other Py, replace arb(Py, ..., Py)
with

arb(Py,..., Pilw/w™],..., Py);

arb(w(l) = w® kD) = B (D) = gy (B) (N = w(k)) .

3.3.5 Data duplication: examples
3.3.5.1 Duplicating constants

This example illustrates duplicating a variable whose intended use is as a constant — that is, its
value is to be computed once at the beginning of the program and used but not changed thereafter.
Duplicating such a variable is appropriate in transforming a program for eventual execution on a

distributed-memory architecture. Let program P be the following program:

real PI

real bl, b2, f, arccos

76

PI = arccos(-1.0)

arb
bl = £(PI, 1)
b2 = £(PI, 2)
end arb

Then P is refined by the following program P’:

real PI1, PI2

real bl, b2, f, arccos

arb
PI1 = arccos(-1.0)
PI2 = arccos(-1.0)
end arb
arb
bl = £(PI1, 1)
b2 = £(PI2, 2)
end arb

We can then apply Theorem 3.1 to produce the following program P", which refines P’ and thus P:

real PI1, PI2

real bl, b2, f, arccos

arb
seq
PI1 = arccos(-1.0) ; bl = £(PI1, 1)
end seq
seq
PI2 = arccos(-1.0) ; b2 = £(PI2, 2)
end seq
end arb

3.3.5.2 Duplicating loop counters

This example illustrates duplicating a loop counter; again, such a duplication is appropriate in
transforming a program for eventual execution on a distributed-memory architecture. Let program

P be the following program to compute the sum and product of the integers from 1 to N:

integer N, j, sum, prod

7

arb
sum = 0
prod = 1
end arb
do j=1, N
arb
sum = sum + j
prod = prod * j
end arb

end do
We first rewrite P to make the operations on the loop counter explicit:

integer N, j, sum, prod
arb

sum = 0

prod = 1
end arb
j=1
do while (j <= N)

arb

sum = sum + j

prod = prod * j

end arb
j=i+t
end do

We can now apply data duplication to produce the following program P’, which refines P:

integer N, j1, j2, sum, prod

arb
sum = 0
prod = 1
end arb
arb
j1 =1
j2 =1

end arb

78

do while (j1 <= N)

arb
sum = sum + j1
prod = prod * j2

end arb

arb
jl=3j1+1
j2=3j2+ 1

end arb

end do

We can apply Theorem 3.1 to produce a further refinement:

integer N, j1, j2, sum, prod

arb
seq
sum = 0 ; jl1 =1
end seq
seq
prod =1 ; j2 =1
end seq
end arb

do while (j1 <= N)

arb
seq
sum = sum + j1 ; jl1 = j1 + 1
end seq
seq
prod = prod * j2 ; j2 = j2 + 1
end seq
end arb
end do

We observe that j1 = j2 is an invariant of the loop, and that it is reasonable to suppose that the

above program could be further refined to produce the following;:

integer N, j1, j2, sum, prod

arb

79

seq
sum = 0 ; jl1 =1
do while (j1 <= N)
sum = sum + j1 ; j1 = j1 + 1
end do
end seq
seq
prod =1 ; j2 =1
do while (j2 <= N)
prod = prod * j2 ; j2 = j2 + 1
end do
end seq

end arb

Such a transformation is a special case of the general transformation for parallel composition and
repetition discussed in Section 4.3.1, so we do not give a proof here, but simply observe that the cor-
rectness of the above transformation could be proved by the technique of examining and rearranging

possible computations used to prove Theorem 2.15 in Section 2.2.2.

3.3.5.3 Creating shadow copies of variables

Ideally, the partitioning of data in a data-distribution scheme allows computation to also be parti-
tioned such that each element of the computational partition addresses only data from the corre-
sponding element of the data partition. This is not always possible, however, so what is typically
done is to partition the computation based on the data partition and an owner-computes rule (in
which process i performs any computation needed to assign new values to variables in the i-th ele-
ment of the data partition). In this situation, an element of the computational partition may require
read access to variables outside its element of the data partition. A technique frequently employed
in programs for distributed-memory architectures is to create shadow copies of such variables. If
the variables involved are boundary values for local sections of an array that has been partitioned
and distributed, it is common to dimension the array’s local section to include a ghost boundary to
be used to hold the shadow copies. Program correctness is maintained by updating the value of the
shadow copies whenever the value of the main copy changes. As noted previously (Section 3.3.4),
however, the timing of the update is somewhat flexible, provided the copies are updated before being
used.

This example illustrates such a situation. The computation is a timestep loop in which each step
involves the computation of values for elements of array new based on values of elements of array

old, followed by the copying of values from new to old. Let program P be the following program:

80

integer N, NSTEPS
real 01d(0:N+1), new(1:N)
integer k
! initialize 01d(0), old(N+1) to 1.0, other o0ld(i) to 0.0
call initialize(old)
do k = 1, NSTEPS
arball (i =1 : N)
new(i) = 0.5 * (old(i-1) + old(i+1))
end arball
arball (i =1 : N)
01d(i) = new(i)
end arball

end do

We can transform P for eventual execution on a distributed-memory architecture by partitioning
arrays old and new as follows. (For simplicity, we show a transformation for 2 processes; the more
general transformation for P processes is similar.) new is partitioned into two local sections of equal
size N/2; elements of new are mapped one-to-one to elements of the local sections. 014 is partitioned
into two local sections of equal size (IN/2) + 2, with each local section extended on one side by a ghost
boundary of width 1. The situation for array old is illustrated by Figure 3.2: Elements other than
01d(N/2) and 01d((N/2)+1) are mapped one-to-one to elements of the local sections; elements
01d(N/2) and o01d((N/2)+1) are duplicated, with one copy (the one shaded in Figure 3.2) the
shadow copy. As discussed previously, program correctness is maintained as long as copy consistency
(between the shadow copies and the elements of which they are duplicates) is (re-)established before

being exploited. The following program P’ is the result of applying to P this transformation (data

(TTTT] |

HERR
SN

Figure 3.2: Partitioning an array and creating shadow copies.

distribution/duplication), together with a change-of-granularity transformation based on Theorem

3.2:

integer N, NSTEPS
real 01d(0: (N/2)+1, 2), new(1:(N/2), 2)

integer k, i1, i2

81
! initialize 01d(0, 1), 0ld((N/2)+1, 2) to 1.0, other old(i, j) to 0.0
call initialize(old)
do k = 1, NSTEPS

! re-establish copy consistency

arb
old((N/2)+1, 1) = old(1, 2)
01d(0, 2) = old(N/2, 1)
end arb
arb
do i1 = 1, N/2
new(il, 1) = 0.5 * (old(il-1, 1) + old(il+1, 1))
end do
do i2 = 1, N/2
new(i2, 2) = 0.5 * (old(i2-1, 2) + old(i2+1, 2))
end do
end arb
arb
do il = 1, N/2
0ld(il, 1) = new(il, 1)
end do
do i2 = 1, N/2
01d(i2, 2) = new(i2, 2)
end do
end arb
end do

3.3.5.4 Redistributing a variable

In some computations, calculations best performed with one data-distribution scheme are sequen-
tially composed with calculations best performed with a different data-distribution scheme. Exam-
ples include the spectral-methods computations described in Section 7.2.2, which are characterized
by row operations (performing a calculation on each row of a 2-dimensional array — best performed
with data distributed by rows) alternating with column operations (performing a calculation on
each column — best performed with data distributed by columns). For such computations, what
is typically done is to employ more than one data-distribution scheme and redistribute the data as
needed. This strategy can be regarded as an extreme form of data duplication, in which all elements

of the array are duplicated, and re-establishing copy consistency involves copying (redistributing) the

82

entire array. Section 6.1 presents an example of such a computation and how it can be transformed.

3.4 Other transformations

3.4.1 Reductions

If op is an associative binary operator over domain D with identity element ident, we can define the

reduction r of a finite of set of elements {di,...,dn} of elements of D with op thus:

T=d1 op ... OpdN

We can compute 7 sequentially with the following program P:

r = <ident>
doi=1,N
r = r <op> d(i)

end do

Such a program cannot be trivially transformed into a program making use of arb composition, but

we observe that since op is associative, it can be refined by the following program P’:

arb
seq
rl = <ident>
do i1 =1, N/2
rl = r1 <op> d(il)
end do
end seq
seq
r2 = <ident>
do i2 = N/2 + 1, N
r2 = r2 <op> d(i2)
end do
end seq
end arb

r = rl <op> r2

P! is likely to be more efficient than P when executed on a parallel architecture, assuming that the
benefit resulting from dividing the computation between two threads is not overwhelmed by the cost

of thread creation.

83

Examples of operators to which this technique can be applied are integer addition and multi-
plication (assuming no overflow), and finding the minimum or maximum. Floating-point addition
and multiplication are not in general associative and so cannot be treated in this manner unless it
is acceptable to ignore discrepancies arising from their lack of associativity; whether this acceptable

may depend on both the application and the data being summed or multiplied.

3.4.2 skip as an identity element

Given that skip is an identity element for sequential composition, it is also an identity element for

arb composition.

Theorem 3.3.

arb(skip, P)

Proof of Theorem 3.3.
Trivial.
O

This theorem can be useful in padding an arb composition to take advantage of Theorem 3.1, as in

the following example. Let program P be the following:

arb
al =1
a2 = 2
end arb
b =10
arb
cl = al
c2 = a2

end arb

84

We can apply Theorem 3.3 and Theorem 3.1 to get the following refinement of P:

arb
seq
al=1; b=10; cl = al
end seq
seq
a2 =2 ; c2 = a2
end seq

end arb

85

Chapter 4

The par model and shared-memory

programs

As discussed in Chapter 1, once we have developed a program in our arb model, we can transform
the program into one suitable for execution on a shared-memory architecture via what we call the
par model, which is based on a structured form of parallel composition with barrier synchronization
that we call par composition. In our methodology, we initially write down programs using arb
composition and sequential constructs; after applying transformations such as those presented in
Chapter 3, we transform the results in par-model programs, which are then readily converted into
programs for shared-memory architectures (by replacing par composition with parallel composition
and our barrier synchronization construct with that provided by a selected parallel language or
library). As noted in Chapter 2, arb-model programs can be executed directly on shared-memory
architectures, but they may not be very efficient, particularly if the cost of thread creation is high.
par-model programs are more likely to be efficient for such architectures, and in addition serve
as an intermediate stage in the process of transforming arb-model programs into programs for

distributed-memory architectures. In this chapter we address the following topics:

e Extending our model of parallel composition to include barrier synchronization.

e Transforming arb-model programs into programs using parallel composition with barrier syn-

chronization.

e Executing such programs on shared-memory architectures.

86

4.1 Parallel composition with barrier synchronization

We first expand the definition of parallel composition given in Chapter 2 (Definition 2.12) to include
barrier synchronization. Behind any synchronization mechanism is the notion of “suspending” a
component of a parallel composition until some condition is met — that is, temporarily interrupting
the normal flow of control in the component, and then resuming it when the condition is met. We
model suspension as busy waiting, since this approach simplifies our definitions and proofs by making
it unnecessary to distinguish between computations that terminate normally and computations that
terminate in a deadlock situation — if suspension is modeled as a busy wait, deadlocked computations

are infinite.

4.1.1 Specification of barrier synchronization

We first give a specification for barrier synchronization; that is, we define the expected behavior of a
barrier command in the context of the parallel composition of programs P, ..., Py. If iB; denotes
the number of times P; has initiated the barrier command, and cB; denotes the number of times P;

has completed the barrier command, then we require the following;:

e For all j,iB; =cBj oriB; = cB;j + 1. If iB; = c¢B;j + 1, we say that P; is suspended at the

barrier. If ¢{B; = c¢B;, we say that P; is not suspended at the barrier.

o If P; and Pj are both suspended at the barrier, or neither P; nor P is suspended at the

barrier, then iB; = iDBy.
o If P; is suspended at the barrier and Py is not suspended at the barrier, iB; = iBy + 1.

e For any n, if every P; initiates the barrier command n times, then eventually every P; completes

the barrier command n times:

We observe that this specification simply captures formally the usual meaning of barrier synchro-
nization and is consistent with other formalizations, for example those of [2] and [70]. Most details of
the specification were obtained from [72]; the overall method (in which initiations and completions

of a command are considered separately) owes much to [55].

4.1.2 Definitions

We define barrier synchronization by extending the definition of parallel composition given in Defi-

nition 2.12 and defining a new command, barrier. This combined definition implements a common

87

approach to barrier synchronization based on keeping a count of processes waiting at the barrier,
as in [2] and [70]. In the context of our model, we implement this approach using two protocol
variables local to the parallel composition, a count @ of suspended components and a flag Arriving
that indicates whether components are arriving at the barrier or leaving. As components arrive at
the barrier, we suspend them and increment). When @ equals the number of components, we
set Arriving to false and allow components to leave the barrier. Components leave the barrier by
unsuspending and decrementing (). When @Q equals 0, we reset Arriving to true, ready for the next

use of the barrier.

Definition 4.1 (barrier).

We define program barrier = (V, L, InitL, A, PV, PA) as follows:
o V=LU{Q, Arriving}.
e L = {En, Susp}, where En, Susp are Boolean variables.
e InitL = (true, false).
o A = {aarrive, Arelease, Aleave, Areset, Vwait }, Where

— Qgrrive cOrresponds to a process’s initiating the barrier command when fewer than N —1
other processes are suspended. The process should then suspend, so the action is defined
by the set of state transitions s — s’ such that:

x In s, En is true, Arriving is true, and Q < (N — 1).
x s' is s with En set to false, Susp set to true, and () incremented by 1.

— Qprelegse cOrresponds to a process’s initiating the barrier command when N — 1 other
processes are suspended. The process should then complete the command and enable the
other processes to complete their barrier commands as well. The action is thus defined
by the set of state transitions s — s’ such that:

x In s, En is true, Arriving is true, and Q = (N — 1).
x s’ is s with En set to false and Arriving set to false. Susp, which was initially false,

is unchanged.

— Gleqve COrresponds to a process’s completing the barrier command when at least one other
process has not completed its barrier command. The action is defined by the set of state
transitions s — s’ such that:

x In s, Susp is true, Arriving is false, and Q > 1.

x &' is s with Susp set to false and @ decremented by 1.

88

— Qreset cOrresponds to a process’s completing the barrier command when all other processes
have already done so. The action is defined by the set of state transitions s — s’ such

that:
x In s, Susp is true, Arriving is false, and Q = 1.
x &' is s with Susp set to false, Arriving set to true, and @ set to 0.

— Qyasit cOrresponds to a process’s busy-waiting at the barrier. The action is defined by the

set of state transitions s — s’ such that:

*x In s, Susp is true.
x s =s.
e PV ={Q, Arriving}.

e PA=A.

Definition 4.2 (Parallel composition with barrier synchronization).

We define parallel composition as in Chapter 2 (Definition 2.12), except that we add local pro-
tocol variables Arriving (of type Boolean) and @ (of type integer) with initial values true and 0

respectively.

O

Remarks about Definition 4.2.

e This definition meets the specification given in Section 4.1.1; a proof can be constructed by
formalizing the introductory discussion of Section 4.1.2. Observe that the last point of the
specification — the required progress property — is in part a consequence of our fairness

requirement for computations.

4.2 The par model

We now define a structured form of parallel composition with barrier synchronization. Previously we

defined a notion of arb-compatibility and then defined arb composition as the parallel composition

89

of arb-compatible components. Analogously, in this chapter we define a notion of par-compatibility
and then define par composition as the parallel composition of par-compatible components. The
idea behind par-compatibility is that the components match up with regard to their use of the
barrier command — that is, they all execute the barrier command the same number of times and

hence do not deadlock.

4.2.1 Preliminary definitions

Definition 4.3 (Free barrier).

Program P is said to contain a free barrier exactly when it contains an instance of barrier not

enclosed in a parallel composition.

O

Examples of Definition 4.3.
Q; barrier; R contains a free barrier. (Q1;barrier; Ry)||(Q1;barrier; Ry) does not.

O

Definition 4.4 (arb-compatible, revisited).

Programs Py, ..., Py are arb-compatible exactly when (1) they meet the conditions for

arb-compatibility given earlier (Definition 2.14), and (2) for each j, P; contains no free barriers.

O

4.2.2 par-compatibility

We can now define par-compatibility. Observe that this definition is given in terms of restricted
forms of the alternative (IF) and repetition (DO) constructs of Dijkstra’s guarded-command lan-

guage [35, 37], but it applies to any programming notation with equivalent constructs.

Definition 4.5 (par-compatible).

We say programs P, ..., Py are par-compatible exactly when one of the following is true:

e P,..., Py are arb-compatible.

90

e For each j,
P; = Qj;barrier; R;

where Q1,...,Qn are arb-compatible and Ry, ..., Ry are par-compatible.

e For each j,
Pj =if bj — Q]’ [] —|bj — skip fi

where Q1,...,Qn~ are par-compatible, and for k¥ # j no variable that affects b; is written by

Q-
e For each j,

P; =if b; — (Qj;barrier; R;) [| ~b; — skip fi

where @1,...,Qn are arb-compatible, R;,..., Ry are par-compatible, and for £ # j no

variable that affects b; is written by Q.

e For each j,

P; =dob; — (Qj;barrier; R;; barrier) od

where @1,...,Qn are arb-compatible, R;,..., Ry are par-compatible, and for k£ # j no

variable that affects b; is written by Q.

4.2.3 par composition

As with arb, we write par(P,..., Py) to denote the parallel composition (with barrier synchro-

nization) of par-compatible elements Py, ..., Py.

4.2.3.1 Fortran 90 notation

Again as for arb, we define a slightly different notation for use with Fortran 90. As for arb,
this notation allows us to develop programs using the arb and par models that can be easily
transformed into programs in practical languages based on Fortran 90, as described in Section 4.4.

For par-compatible programs Pi, ..., Py, we write their par composition thus:

91

par

P_N

end par

4.2.3.2 parall

We also define a syntax parall analogous to arball.

Definition 4.6 (parall).

If we have N index variables i1, ..., iy, with corresponding index ranges i;_start < i; < i;_end, and

program block P such that P does not modify the value of any of the index variables — that is,

mod.P N {i1,...,in} = {} — then we can define an parall composition as follows:

For each tuple (z1,...,zn) in the cross product of the index ranges, we define a correspond-
ing program block P(xy,...,zxN) by replacing index variables i1,...,ixy with corresponding values
Z1,...,zN. If the resulting program blocks are par-compatible, then we write their par composition
as follows:

parall (i_1 = i 1 start : i_1_end , ..., i_.N = i_N_start : i_N_end)

P(x_1, ..., x_N)

end parall

Remarks about Definition 4.6.

e As for arball (Definition 2.27), the body of the parall composition can be a sequential com-
position. We do not require that the sequential composition be explicit, as illustrated in the

next-to-last example.

92
4.2.4 Examples of par composition

Composition of sequential blocks

The following example composes two sequences, the first assigning to a and b and the second
assigning to ¢ and d. (Here, the barrier is not needed, and is included purely as an illustration of a

syntactically valid use.)

par
seq
a=1; barrier ; b = a
end seq
seq
c =2 ; barrier ; d = ¢
end seq
end par

Composition of sequential blocks (parall)

The following example composes ten sequences, each assigning to one element of a and one element
of b. Here, the barrier is needed, since otherwise the sequences being composed would not be

par-compatible.

parall (i = 1:10)

seq
a(i) = 1
barrier
b(i) = a(11-i)
end seq
end parall

As noted in the remarks following Definition 4.6, if the body of the parall composition is a sequential
composition, we do not require that the sequential composition be explicit; that is, this example
could also be written:
parall (i = 1:10)
a(i) = i
barrier
b(i) = a(11-i)

end parall

93

without changing its meaning.

Invalid composition
The following example is not a valid par composition; the two sequences are not par-compatible.
par
seq
a=1; barrier ; b = a
end seq
seq
c =2
end seq

end par

4.3 Transforming arb-model programs into par-model pro-
grams

We now give theorems allowing us to transform programs in the arb model into programs in the

par model.

4.3.1 Theorems

Theorem 4.7 (Replacement of arb with par).

If P,..., Py are arb-compatible,

arb(Py,...,Pn)

1M

par(Pla"'v-PN)

Proof of Theorem 4.7.
Trivial.

O

94

Theorem 4.8 (Interchange of par and sequential composition).

If Q1,...,QnN are arb-compatible and Ry, ..., Ry are par-compatible, then

arb(Q4,...,Qn);par(Ry,...,RN)

M

par(
(Q1; barrier; Ry),

.y

(Qn;barrier; Ry)

Proof of Theorem 4.8.

First observe that both sides of the refinement have the same set of non-local variables V,;. We
need to show that given any maximal computation C' of the right-hand side of the refinement we
can produce a maximal computation C' of the left-hand side such that C' is equivalent to C with
respect to V,,;. This is straightforward: In any maximal computation of the right-hand side, from the
definitions of s